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Preface
This book has been written with the main concern of providing the scientific com-
munity with a mean of building a bridge between physicists and philosophers in the
field of Quantum Physics. It defines a common language to describe the realm of our
experience of the world and I truly hope that this new language will find a large au-
dience in both communities. For physicists, it stresses the importance of developing
a well-defined mathematical formalism for Quantum Field Theory, since this is the
necessary condition for philosophers to identify the underlying ontology, which builds
the base of every philosophical discourse on the implications of Quantum Physics.
The development of a coherent, convincing discourse by philosophers builds in turn
the ground on which every conceptually and technically correct vulgarization effort
can foot, and contributes thereby to broaden the popularity and acceptance of Quan-
tum Physics through the whole society and especially among prospective students.
Philosophers, on the other hand, gain a mean of confronting their ideas with the
latest insights into fundamental physics, of expressing these ideas in terms of nat-
uralistically grounded metaphysics and of articulating speculative thoughts in the
uncertainty zones remaining within the physical theory itself or inherent to it.

The careful reader already familiar with Quantum Physics will find here the very
first mathematically well-defined formulation of Quantum Field Theory coming along
with an intellectually satisfactory interpretation, perfectly capable of explaining all
known quantum phenomena, and I am very pleased to present it to your curiosity
today! However, although you will find, in the first edition of this book, all the
main ideas I wanted to develop here, there still are a few areas which I couldn’t yet
find the time to develop to the extend they would have deserved. For instance, I do
consider the formulation of Quantum Field Theory presented in this book, which is
essentially a lattice regularization, as an acceptable fundamental theory, although it
obviously lacks to respect the heuristical principles of Gauge and Poincaré invariance
on which any textbook introduction to Quantum Field Theory relies. I included a
few calculation examples in order to demonstrate that, at usual energy and distance
scales, the resulting physics is the same as expected, but it would have been useful, to
convince the skeptical reader, to add a classical renormalization example, a treatment
of the weak and strong interactions as well as of the Higgs mechanism and of some
gravitational model. The philosophical aspects of this book might have deserved a
more extensive treatment, too. I have given a few basic examples to show how the
physical theory can be used as a reference language in order to express philosophical
questions, but I would have to add more various examples to give an adequate idea
of the potential of this method.

I am preparing a second, augmented edition of this work so that the ideas pre-
sented here become more explicit and accessible to a broader public. For the time
being, I wish you a fruitful and enjoyable reading as well as long hours of delightful
meditation!

January, 2013
Sébastien Fauvel
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History of this book

For one of the most stringent tests of any physical theory
is the prediction of its own creation process.

Sébastien Fauvel,
Quantum Ethics [8]

How would Quantum Field Theory look like if we stopped for a while develop-
ing it further as if it were the draft of a yet-to-be-discovered Theory of Everything,
and just started to reformulate the Standard Model as a mathematically and con-
ceptually coherent physical theory? And what would such a theory tell us about
the world and about ourselves, which remains hidden in the ill-defined formulations
we’ve grown up with through the last decades? As I started back in 2010 to reflect
on these questions, I didn’t have yet a clear vision of what this work would lead
me to. I just had the feeling that these very basic questions hadn’t been interesting
anyone any more for a far too long time, and that we should actually have the means
by now, with our understanding of Renormalization, of writing down a well-defined
Quantum Field Theory reasonably accounting for all known experimental data (ex-
cepted General Relativity phenomena) – which means essentially that it has to be
compatible with the Standard Model at known energy scales. I was quite confident
that I could find a physically sound regularization of the Standard Model, which
I simply wouldn’t consider as an approximation, but take as the exact theory it-
self, the Standard Model being an ill-defined idealization of it. The models used
in computer simulations of lattice Quantum Chromodynamics, for instance, would
show me the way. Of course, I knew that I wouldn’t be able to derive the theory
from the usual first principles any more, but given that all the attempts of axiomatic
Quantum Field Theory to construct well-defined interacting fields upon these first
principles had failed miserably, I thought that maybe they could be misleading in the
end. Anyhow, I had never been very fond of the heuristical construction of Quan-
tum Field Theory based on Gauge and Poincaré invariance. Developing the whole
mathematical apparatus of Representation Theory to simply derive the expression
of spin 1 and spin 1/2 spinors as irreducible unitary representations of the Poincaré
group had always seemed far too expensive to me, and Gauge transformations mixing
particle fields far too artificial to make up a fundamental symmetry of Nature.

So I felt free to redefine the Hilbert space of the quantum states without paying
much attention to these first principles and focused instead on the mathematical
well-definedness of the theory, and in particular of the Schrödinger equation. The
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most evident way of insuring a well-defined solution at all times is to make the
Hilbert space finite dimensional, which has two major physical implications. The
most important one is that the physical space itself, too, has to be finite, i.e. to
consist in a finite number of points. The simplest way to take this constraint into
account is to define space as a finite lattice, like in computer simulations of Quantum
Chromodynamics, and to adapt the expression of the Hamiltonian operator of the
Standard Model, developed on the momentum basis, by simply using a discrete
Fourier transform on the lattice. This formulation of the theory, considered as a
fundamental theory and not as a numerical approximation, has evident ontological
and cosmological implications. It is interesting to see, for instance, how modern
physics addresses thus the atomist polemic of ancient Greece, i.e. the question if
matter can be, in principle, indefinitely separated into smaller pieces, or if there are
smallest building blocks of matter. The answer of this theory were not only that
elementary particles are the smallest, point-like building blocks of matter, but that
space itself is constituted of smallest, point-like building blocks, and even of a finite
number of them! Incidentally, the void between point-like particles imagined by
Greek atomists like Democritus acquires a very different quality, too. There is still
a notion of void as the unrealized potentiality of the presence of matter, represented
by an unoccupied lattice site, but this site, although it is empty of matter, is still
something familiar, identifiable, something we could put a name on. Psychologically,
the void loses thus much of the threatening quality of the indiscernible. The empty
space that we might tend to imagine between the lattice sites isn’t actually part of
the material world, it is purely virtual and has no physical relevance.

From a cosmological perspective, the finiteness of space is also a very interesting
aspect. It addresses the old question of knowing whether there is something like
a frontier of the universe or if the universe is infinite, and it offers a very original
answer. According to this theory, the universe is both finite and boundless; it actually
has a toroidal structure, which is not of topological nature, but reveals itself at the
level of the field dynamics: Wave packets will transit smoothly from one side of the
finite lattice to the opposite one without experiencing any discontinuity. So the light
we emit, for instance, could come back to us from the opposite direction after having
traveled through the whole universe. Yes, if the universe were smaller, maybe you
could see the Earth looking at the stars... and the position of the closest images of
the Earth in the night sky would give you the direction of the lattice axes, by the
way.

The second physical implication of the finite dimension of the Hilbert space is
the existence of a maximum occupation number for boson fields. I wondered if there
were any good theoretical reason to assume an unbounded number of bosons per field
mode, and I actually didn’t find any. Of course, the commutation relations usually
considered as essential properties of the creation operators would break down when
the maximum number of particles is being reached, but these relations, relicts of a
heuristical construction of Quantum Field Theory based on the harmonic oscillator
model of Quantum Mechanics, are not really necessary to define creation operators.
In fact, it is quite straight-forward to define a basis of the Hilbert space on a finite
lattice, you just have to take as basis vectors field configurations defined as functions
giving the number of particles of each kind at each lattice site. And it isn’t more
complicated either to define creation operators as adding one particle of a given kind
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at a given lattice site, as long as a given maximum occupation number hasn’t been
reached. The normalization factors implied by the commutation relations can then
be moved to the spinors, where they actually belong. The situation is quite similar
for fermions: If you don’t construct the Hilbert space heuristically as a Fock space
over the one-particle Hilbert space of Quantum Mechanics, the sign factors implied
by the anticommutation of the creation operators can be moved to the spinors too.
So in the end, there isn’t any qualitative distinction to be made between bosons
and fermions; the same creation operators can be used in both cases, differing only
in their maximum occupation numbers. In fact, if you don’t construct the Hilbert
space as a Fock space, but define it directly (or use a Fock space modulo particle
labels permutations), there is no Spin-Statistics Theorem classifying particles into
bosons and fermions according to their spin any more. This famous theorem relates
the integer or half-integer character of the spin to the possible sign change happening
to the quantum state when the labels of two particles of the same type are being
exchanged. But the notion of exchanging the labels of two particles doesn’t actually
have any physical meaning, it only makes sense in the Fock space formalism, and is a
mere mathematical artifact. I think it is important to realize that the Spin-Statistics
Theorem, traditionally considered as one of the greatest insights provided by Special
Relativity into Quantum Field Theory, actually doesn’t have any profound physical
meaning, and doesn’t establish, as it is often being stated, a connexion between the
geometry of space-time and the collective behavior of particles. It only expresses a
property of the “unphysical” Fock space formalism, and becomes meaningless as soon
as you consider the “physical” quantum states modulo particle labels permutations.
So the categories of ‘bosons’ and ‘fermions’ are not implied by Special Relativity,
as far as their collective behavior is concerned; only the form of the spinors is.
Determining experimentally the maximum occupation number for each boson field
is still an open question: For “heavy” bosons like the Z boson, for instance, I don’t
think that a lower bound much greater that one can already be established with
current experimental data...

Once I had constructed this well-defined framework for Quantum Field Theory
and made a first proof-of-concept by integrating Quantum Electrodynamics, I left
the paper draft I had written by that time rest for a while, took care of my new-
born son and started reading a book from the Philosophy library of my wife that
had been intriguing me for a while: A French translation of Spinoza’s Ethics. The
reading would accompany me through the whole summer of 2011 and make a lasting
impression on me. The subtle way Spinoza integrates subjective experience into the
physical world reminded me of von Neumann’s hypothesis that mind could somehow
cause the collapse of the quantum state of a system upon measurement, and I realized
that, within the well-defined framework I had constructed, we had the possibility for
the first time to give a formally very precise definition of what von Neumann had
meant. This would provide a precise answer to the measurement problem, and
probably the first one that isn’t only psychologically motivated, but also constrained
by formal consistency. So I started to figure out how to relate subjective experience
to the state of the material world in quantum physical terms, and re-read Spinoza
with this question in mind. Following von Neumann’s interpretation, I should relate
a mental state to a Hilbert subspace in such a way that the Hilbert space be a
direct sum of the subspaces corresponding to each possible mental state. Making the
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assumption that we have to do with different states of a single subjective experience
in this decomposition leads directly to the paradox of Wigner’s friend, that is, when
several bodies (brains?) are present at once – and it is the case most of the time,
isn’t it? –, which one oughts to determine the mental state and trigger the collapse?
Escaping this issue requires to describe the mental state in its totality, i.e. to specify
the number of subjects having each possible subjective experience at a time, so that a
mental state is, basically, described with the same formalism as a field configuration
over subjective experiences. And exactly as this is the case for particles in particle
fields, subjects are indistinguishable at a fundamental level. There is nothing like
“my” mind or “your” mind, each one having its own personal history that could,
in principle, be tracked back from birth to death. Pretty much like single particles
don’t have any individual trajectory in Quantum Physics, single subjects don’t have
any individual history either. As Spinoza would say, we are all thinking together in
God; we participate of a single mental reality and don’t have any individual existence
below this ontological level. This will probably sound crazy to most readers, and it
is probably one of the reasons why Spinoza has been excommunicated for heresy in
his time. But it is actually an utmost self-consistent point of view, and the only one
consistent with Quantum Field Theory so far. I cannot but warmly advise you to
take a closer look at The Ethics; re-reading Spinoza and seeing how a 17th century
heresy meets Quantum Physics is really a very exciting experience. The pantheist
thesis of Spinoza fits incredibly well in the world view sustained by Quantum Field
Theory; neither your body, enmeshed by quantum entanglement with other ones,
nor your mind, indistinguishable from other ones, have any individual existence:
Nothing exists but God, aka Nature. This is basically the idea of this book, and
given that no other interpretation of Quantum Physics integrates so deeply into the
formalism of Quantum Field Theory, this made me think that this book was worth
writing it, and I guess it will be a joy for many science philosophers to see that the
latest achievements in fundamental physics are leading us back, eventually, from a
materialistic to a pantheist philosophy.

As soon as I had developed this Spinozist model of the mental world (which
builds up, together with the material world of quantum fields, the physical world as
a whole), I got confronted with the old question of the status of time in Quantum
Physics. The controversies on this subject have been summarized very concisely by
Wolfgang Pauli in his statement that there cannot be any time observable in Quan-
tum Physics. In the Copenhagen interpretation, indeed, time isn’t a property of the
quantum system under observation; it isn’t being measured quantum physically, but
classically, and correlated with quantum measurement results. When you measure
the fluorescence lifetime of ruby, for instance, you only measure the presence of emit-
ted photons on a quantum physical way, which implies the collapse of the system’s
quantum state, but you measure the time at which the photodetector gets activated
by simultaneously reading a clock in a classical way. That is a very strange feature
of the quantum/classical dichotomy of the Copenhagen interpretation, and it leaves
one very basic question completely open: There is no way to predict quantum physi-
cally when the quantum measurement process and the collapse of the quantum state
will take place, or even to find out the time distribution of the measurement pro-
cess in a statistical way. The Copenhagen interpretation only defines the statistical
distribution of the possible measurement results assuming a measurement is being
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performed at a given time, but doesn’t tell anything about the conditions under
which a quantum measurement will actually happen – basically because measuring
is considered as an act taking place in the classical world, which escapes quantum
physical description. The reason why this uncertainty about the time at which a
quantum measurement happens doesn’t have any consequences on our ability to
derive statistical results from the theory was already clear in the 1930’s: As von
Neumann pointed out, it wouldn’t make any statistical difference if the collapse of
the quantum state happened upon an interaction of the quantum system with a
measurement apparatus, or upon an interaction of the quantum system including
measurement apparatus with the observer, or at any stage inbetween. And even if
the observer wouldn’t read the output of the measurement apparatus, the interaction
of the quantum system with it, like any process introducing a strong correlation of
its state with the environment, would yield quantum decoherence effects which are
practically impossible to tell apart from the effects of an hypothetical collapse, as
far as the statistical measurement results are concerned. So we have practically no
means of finding out at which stage the collapse is taking place, and addressing this
question remains a purely theoretical issue of no practical interest. Nevertheless, it
has to be addressed by any theory going beyond the Copenhagen interpretation and
trying to describe collapse as a physical process independent of the free will of the
observer, which is subsumed in the classical world view. There are lots of so-called
spontaneous collapse theories, developed originally by John Bell followed by many
others, which generally describe collapse as a dynamical process, yielding in fine to
the same states as an abrupt orthogonal projection would do. But these models are
purely materialistic and don’t address the question of describing subjective experi-
ence in physical terms. The suggestion of von Neumann that mind could cause the
collapse of the quantum state, which would get projected to quantum states of the
brain corresponding to a definite subjective experience, seemed much more promis-
ing to me, as I was looking forward to sketching a more comprehensive world view in
physics. So I stuck to the rather conservative hypothesis of an abrupt collapse of the
quantum state via a random orthogonal projection to one of the Hilbert subspaces
corresponding to a given mental state, and I had to define precisely when this process
would happen. In doing so, you are totally free as a theoretical physicist, because, as
I said before, collapse and quantum decoherence have practically the same signature
in statistical measurement results, so that we can never be sure of having observed
a collapse or not. I rejected the hypothesis of a continuous collapse, because contin-
uous stochastic processes are only idealizations, so I supposed rather that collapses
happen at discrete times. This implies that our mental state evolves discontinuously,
although we usually don’t notice it. From a phenomenological point of view, this
isn’t very surprising: Our impression of continuity is based on short-time memory
and intentionality, not on the permanence and continuity of our subjective experi-
ence itself. Even if we had a single, isolated mental experience, it would have the
same quality and provide the same sensation of time as a continuous one – for as
the poet says, eternity lies in every moment... The continuity of time only applies at
the material level, while the mental world only picks out single “snapshots” of the
state of the material world, so to say. Determining when these mental experiences
take place cannot be achieved by investigating their subjective content alone; only
the elusive effects of the simultaneous collapse of the quantum state could indicate
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this. So for the sake of simplicity, I just assumed a periodic collapse with a given
elementary period, in order to have a well-defined model, even if we don’t have yet
any experimental clues in this respect. Of course, the collapse of the quantum state
is not a local process in the sense of Relativity Theory, but Einstein-Podolsky-Rosen
experiments have already shown very clearly that this non-locality is really part of
Nature. And after all, who would expect mental phenomena to be local? They are
not bounded to their material substrate; they don’t live in the frame of space, but
in another dimension of the physical world, so to say.

In the end, the model I’m proposing can be roughly described in very simple
terms: A mental state is being experienced while the quantum state is undergoing
an elementary unitary evolution, then a new mental state is being randomly moved to
as the quantum state gets projected to the corresponding subspace, an so on. In the
meanwhile, this almost sounds trivial to me, so I guess I’m eventually understanding
Quantum Physics, at least in this form. This alone would be a revolution in this
field of science. But I’m not interested in pretending to have discovered deep truths
about “the inmost force which binds the world”, to speak with Goethe; I just wanted
to show that it is possible, and actually quite easy, to give Quantum Field Theory a
form and an interpretation which make it a formally and conceptually closed theory,
capable of giving a well-defined answer to any question we can ask it – even if we
may eventually find out that it wasn’t the right one. This interpretation challenges
all existing ones insofar as it is the first time that this degree of conceptual precision
and formal well-definedness has been reached, and I hope this will be motivation
enough for others to work out alternative interpretations and achieve the same level
of quality – so that we can finally know what Quantum Theory is actually about...
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Introduction

Interpreting Quantum Field Theory

The birth of Quantum Physics in the 1920s has been marked by a long period of
intense controversies about its interpretation, which has been recently reviewed by
Juan Miguel Marin in his paper ‘Mysticism’ in quantum mechanics: the forgotten
controversy [15]. The Copenhagen interpretation which emerged from these debates
is dominating the scene since the 1950s-1960s, certainly not because it is intrinsically
better than others, but because it seems to challenge the materialist world view of
classical, ‘everyday’ physics as little as possible. Since the 1970s, however, numerous
alternative interpretations have been proposed and further developed: Pilot-Wave
Theory, Dynamical Collapse Theories, Many-Worlds interpretation, Many-Minds in-
terpretation, Decoherent Histories... All these attempts to give Quantum Physics
a sound interpretation are facing the problem that the mathematical theory itself,
in the form of the Standard Model of Quantum Field Theory (or of slight variants
regarding the existence of the Higgs field, of neutrino masses...), is still ill-defined,
and that it is therefore impossible to assign a physical or metaphysical meaning to
the fundamental mathematical entities of the theory, i.e. to define an ontology. Of
course, it is possible to choose a specific, mathematically well-defined regulariza-
tion of the theory for this purpose, but since renormalization methods are leading,
in the singular limit of the original theory, to the same results for different regu-
larization schemes, we don’t know which regularization is the right one, and as a
consequence we don’t know either which are the fundamental mathematical entities
to be interpreted. Quite surprisingly, however, it seems that this issue has never been
seriously accounted for yet. Existing interpretations of Quantum Physics are either
restricted to non-relativistic Quantum Mechanics, which is no fundamental theory,
or are formulated so vaguely that they are hardly more than the mere idea of an
interpretation, which has made many physicists doubt that such an interpretation
is possible at all. This book will have reached his goal if it convinces the reader
of the contrary and helps interpretation issues recovering again their place at the
heart of the research on Quantum Field Theory. For this purpose, I shall take as an
example a lattice regularization scheme, formulate in this well-defined framework a
rather conservative interpretation inspired by Spinoza’s philosophy and show that
classical philosophical questions can be formulated as simple physical hypotheses in
the frame of the resulting naturalistic metaphysics.
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Philosophical motivation

Most philosophers have ascribed a central role to the ethics in their work, as the
answer to the question “How should I live?” requires a preliminary reflection about
all the fields of our existence, from metaphysics via physics, psychology and morals
up to politics. Up to the emergence of Quantum Field Theory in the late 1920s,
philosophers have always been able to integrate the knowledge gathered in the field
of physics into their world view: In 17th-century Europe, for instance, the Dutch
philosopher Baruch Spinoza worked out in his Ethics [18] the deterministic materi-
alism of classical mechanics and based his philosophy on the idea that everything
in Nature happens according to the divine necessity, both at the material and at
the spiritual level. In fact, from the Antics up to the Age of Enlightenment, physi-
cists used to consider themselves primarily as Nature philosophers. In the modern
ages, however, the scientific community began to split under the influence of in-
dustrial work organization into small groups of specialists lacking interdisciplinary
skills. Nowadays, mainstream physicists even consider philosophical interpretations
of Physics as non-scientific and pointless. Needless to say, such a lack of intellectual
rigor has had serious consequences for the conceptual and formal quality of physical
theories. In the case of Quantum Field Theory, this attitude has resulted in the fact
that, for the last eighty years, no consensus could be reached on its two major is-
sues, known as the measurement problem and the main issue. The latter is a formal
issue consisting in conceiving a mathematically well-defined quantum field theory
formally compatible to Special Relativity∗, which would be highly desirable but is
thought to be technically impossible, although this hasn’t been proved definitely yet.
The former is an interpretation issue concerning the relation between “mind”, i.e.
the primitive form of our experience of the world, and “body”, i.e. the material
world described in terms of quantum fields. There have been numerous propositions
for this interpretation, from the very beginning of Quantum Field Theory in the
1920s and 1930s until now, but as long as the mathematical formalism of the theory
is ill-defined, these interpretations cannot be formulated precisely either. Strictly
speaking, however, the whole theory doesn’t make any sense if this interpretation
issue doesn’t become precisely answered. In order to give a sound philosophical
interpretation of Quantum Field Theory, it is therefore necessary in the first place
to put the mathematical formalism on a well-defined basis. The theory cannot be
formally compatible with Special Relativity if the main issue really cannot be solved;
Relativity Theory should then emerge as an approximation at usual energy and dis-
tance scales. In this book, I shall propose an answer to both issues, describe very
precisely the form of the relation between mind and body according to Quantum
Physics and thus lay the foundations of an ethic taking into account the world view
sustained by Quantum Field Theory.

∗Precisely, one requires that the classical Lagrangian used in the heuristical construction of the
theory be Poincaré invariant and describes local (contact) interactions of point particles in the
Minkowski space-time.
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Abstract
In the formulation of Quantum Field Theory proposed in this book, Nature presents
the two aspects of a material and of a mental world in mutual interaction. The men-
tal world can be adequately experienced by the collectivity of all sentient beings: A
state of the mental world is given by the number of subjects having each possible
subjective experience. Though we are experiencing this mental world directly, we
only experience it partially under the aspect of a single subjective experience, and
must communicate with others subjects in order to get closer to an adequate repre-
sentation of the mental world as a whole. However, communication happens only via
the material world, which is an aspect of Nature that we don’t experience directly
but only through its influence on our subjective experience. This material world,
best described in terms of quantum fields, is by nature holistic and doesn’t involve
precise boundaries of individual bodies. A state of this material world is given by a
quantum superposition of so-called localized states, which are given by the number
of elementary particles of each kind present at each point of space. Each quantum
state can be uniquely decomposed into a sum of components corresponding to each
possible mental state, and this decomposition defines a probability law on the set of
all possible mental states. The joined temporal evolution of both aspects of Nature
is a tree-steps process repeated indefinitely: First, the initial state of the material
world undergoes a deterministic, Hamiltonian evolution of a given, “elementary” du-
ration. Then, the final quantum state defines a probability law according to which
a mental state is being selected and becomes experienced by a various number of
subjects. Finally, the component of the quantum state corresponding to the selected
mental state becomes the initial state of the next evolution process. In this world
view, the mystery of consciousness consists in the fact that there is, to some extent,
an adequation between subjective experiences and the physical processes happening
in the corresponding quantum states, e.g. the biological processes of consciousness
within a human brain.

Overview
This book begins in chapter 1 with the formulation of a mathematically well-defined
frame for any theory of mutually interacting quantum fields of point particles. Well-
definedness is achieved by making sure that the Hamilton space of the quantum states
is finite dimensional, so that the Hamiltonian evolution is trivially well-defined for
any interaction Hamiltonian. The “ingredients” of this mathematical frame are al-
ready well-known in Quantum Field Theory: Space is supposed to have the structure
of a finite three dimensional lattice, the definition of the kinetic energy Hamiltonian
making use of the SLAC derivative, and the occupation number of single modes of
the particle fields is supposed to be bounded for bosons as well as for fermions.

The Hamiltonian evolution of quantum fields is then defined very classically for
an arbitrary interaction Hamiltonian in chapter 2, where general results of scattering
theory are being derived.

A general model for the mental world is defined in chapter 3 and the joint stochas-
tic evolution of the material and mental worlds in chapter 4. The basic idea of this



10

model – that “mind causes collapse” – isn’t quite new, as it has first been formulated
by John von Neumann [16] and was once known as the ‘standard interpretation’ of
Quantum Mechanics. As far as I know, however, it is the first time with this book
that a precise interpretation of a mathematically well-defined Quantum Field Theory
has ever been given. This provides thus the first sound basis for a discussion of the
philosophical implications of the theory, which is the main goal of this book.

The metaphysics of the theory are been sketched in chapter 5 and its interpre-
tation discussed at length in chapter 6. A few classical philosophical questions are
then addressed on this background in chapter 7.

The interaction Hamiltonian of Quantum Electrodynamics is then defined in
chapter 8 and, as an example, the semi-classical cross-section of Coulomb scattering
is calculated to the leading order in chapter 10.

Finally, some usual mathematical functions, notations and operators are being
defined in the appendix.



Part I

Material world
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Chapter 1

Quantum fields

The first simplification to be considered involves
the very existence of the theory.

John Collins,
Renormalization [5]

The aim of this chapter is to develop a well-defined, divergence-free mathematical
formalism for the Standard Model of particle physics. To achieve this, we suppose
that elementary particles are bounded to a finite lattice, also a finite set of world
lines in the flat space-time (so that the particle field only has a finite number of
modes), and that there is a maximum occupation number for any single mode of the
field, for bosons as well as for fermions. This makes the Hilbert space of the states of
the universe finite dimensional, so that the theory is trivially well-defined. We will
develop here a general formalism, valid for any set of elementary particles and for
any form of the interaction Hamiltonian, and define the notations used in the rest
of this book.

1.1 Space
Definition Space is a finite set of points of the form [−N,N]3, where the physical
constant N is a positive integer.

Remarks This constant is supposed to be a “huge” integer (& 1046) which
hasn’t been measured experimentally yet. The finiteness of space is one of the
conditions of the finite dimensionality of the Hilbert space of the quantum states,
which will be defined in section 1.5. This is in turn a necessary condition of the
well-definedness of the evolution equation 2.1 for an arbitrary Hamiltonian operator.
It is therefore a theoretical necessity, which I shall assume although this fact hasn’t
been proved experimentally yet.

Commentaries No notion of distance emerges from this definition of space.
Indeed, according to the ideas developed in Einstein’s vulgarization work Relativity:
The Special and General Theory [7], we consider that distance and duration are ac-
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tually no fundamental notions but have to be defined on an empirical basis. Distance
and duration are measured using physical apparatus like rods or clocks, and their
theoretical definition must rely on a theoretical modeling of these apparatus and of
the observer making use of them. These concepts will emerge from the evolution
equation 2.1 and from the expression of the Hamiltonian operator defined in sections
2.2 and 8.5. According to this expression, we will see that space has a toroidal struc-
ture, i.e. that opposite points on the boundary of the lattice [−N,N]3 are actually
nearest neighbors. This boundary is also a mere artifact, like the boundary of a
world map, and doesn’t represent in any way the “frontier of the universe”. The
physical constant a in the expression of the interaction Hamiltonian plays the role
of the lattice step, i.e. of the distance between nearest neighbors. It is supposed to
be very small (. 10−20 m) and hasn’t yet been measured experimentally either.

Complements We could equivalently postulate that, in the Minkowski space-
time (E , g), defined by:

E := R4

g := diag(1,−1,−1,−1)
x · y := gµνx

µyν

elementary particles cannot occupy an arbitrary point of space but are bounded to a
finite set of (1 + 2N)3 world lines xn forming in some reference frame a finite lattice
of step a:

xn(τ) :=
(

cτ
an

)
n ∈ [−N,N]3

In a reference frame moving with a velocity v relative to the lattice, the space-
time coordinates of these world lines would be given (up to a translation of the
origin) by:

x′n(t) =
(

ct
an⊥ + γ−1an‖ − vt

)
γ := 1√

1− (v/c)2

where we use the notations n‖ := (n · v)v/v2 and n⊥ := n− n‖.
The lattice reference frame itself as well as the physical constants N and a are free

parameters of the theory. As a working hypothesis, we will assume that the lattice
reference frame corresponds to a rest frame of the cosmic microwave background
radiation. The relative velocity v of the sun relative to the lattice would then
verify [13]:

v ≈ 3.7 105 m/s

We will also assume that the lattice step is of the order of the Plank length:

a ∼
√

4πGh/c3 ≈ 1.4 10−34 m
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and that the lattice size is of the order of the Hubble length [10]:

(1 + 2N)a ∼ RH ≈ 1.3 1026 m
N ∼ 4.6 1059

Incidentally, with this values, the cosmological constant of the Λ-Cold Dark Matter
model of Big-Bang cosmology coincides numerically (with a relative error of only
8%) with [14]:

ρvac ∼ 2Nhc
a ((1 + 2N)a)−3 ≈ 5.6 10−10 J/m3

Deriving such a relation, however, isn’t the goal of this book.

1.2 One particle states
Particle types We don’t make in this chapter any assumption about the existing
particle types, e.g. electrons, positrons and photons. We are noting them φ in a
generic way. The corresponding spin states λ depend implicitly, in the notations, on
the particle type. The spin state influences the way a particle interacts with other
particle fields; this effect is described quantitatively in the expression of the spinor
operators in appendix C.1 and C.3.

Definition The (hypothetical) quantum state |Ψ〉 in which the universe only
contains a single particle, of type φ, at point n and in the spin state λ, is written:

|Ψ〉 =
∣∣∣1φn,λ〉

We postulate that a one particle state is given by any linear combination of the
form:

|Ψ〉 =
∑
φ,n,λ

Ψ(1φn,λ)
∣∣∣1φn,λ〉

with arbitrary complex coefficients Ψ(1φn,λ). The set of all these vectors, taken as
an orthonormal basis, forms a finite dimensional Hilbert space written H1 and given
by:

H1 :=
⊥⊕

φ,n,λ

C
∣∣∣1φn,λ〉

Momentum representation We postulate that the momentum p of a particle
in the lattice reference frame can only take values of the form:

p = h
aq

q ∈
(
[−N,N]
1 + 2N

)3

and that the (hypothetical) quantum state in which the universe only contains a
single particle, of type φ, in the spin state λ with the momentum hq/a in the lattice
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reference frame, is given by:∣∣∣1φq,λ〉 := (1 + 2N)−3/2
∑

n

exp (i2πn · q)
∣∣∣1φn,λ〉

These vectors form an orthonormal basis of the Hilbert space H1 and we will use
the notation:

|Ψ〉 =
∑
φ,q,λ

Ψ̃(1φq,λ)
∣∣∣1φq,λ〉

Notation In order to simplify the notations, when defining and using periodical
functions on all q ∈ R3, we will define q ∈

]
− 1

2 ,
1
2
]3 by the equivalence relation q−q ∈

Z3. We have then in particular q = q for all q ∈
(
[−N,N]
1+2N

)3
and q ∈

(
[−N,N]
1+2N

)3
for

all q ∈
(

Z
1+2N

)3
.

1.3 Position and momentum operators
Definition In the lattice reference frame, we define on H1 the position and mo-
mentum operators by:

r̂
∣∣∣1φn,λ〉 := an

∣∣∣1φn,λ〉
p̂
∣∣∣1φq,λ〉 := h

aq
∣∣∣1φq,λ〉

Remark This definition of the momentum operator follows the same principle
as the SLAC derivative [17], but can be expressed as a proper eigenvalue equation,
since momentum eigenstates are well-defined on a finite lattice.

Complements In another reference frame, moving with a velocity v relative to
the lattice, these operators are given (up to a translation of the origin) by:

r̂
∣∣∣1φn,λ〉 :=

(
an⊥ + γ−1an‖ − vt

) ∣∣∣1φn,λ〉
p̂
∣∣∣1φq,λ〉 :=

(
h
aq⊥ + γ

h
aq‖ − γ

Eφq
c2 v

) ∣∣∣1φq,λ〉
where Eφq is the kinetic energy of the particle in the lattice reference frame, defined
as a function of its (bare) rest mass mφ by:

Eφq :=

√
(mφc2)2 +

(
hc
a q
)2

Similarly, we define the relativistic factors βφq and γφq , with the help of the reduced
mass Mφ := mφac/h, by:

βφq :=
q√

M2
φ + q2
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γφq :=

√
1 +

(
q

Mφ

)2

and the velocity by vφq := βφqc.

1.4 Wave function
Complements We can associate following wave function components to each one
particle state:

Ψφ
λ (x) := (1 + 2N)−3/2

∑
q

Ψ̃(1φq,λ)exp
(

i2πx · qa

)
Eigenstates of the momentum operator are thus associated with plane waves on R3.
Equivalently, we can write:

Ψφ
λ (x) =

∑
n

Ψ(1φn,λ)δx (x− an)

δx (x) := (1 + 2N)−3
∏
i

sin (πxi/a)
sin (πxi/(1 + 2N)a)

We define thus an isomorphism between a finite set, indexed on (φ, λ), of comple-
mentary subspaces ofH1, and a finite dimensional subspace of C∞

(
R3,C

)
containing

functions of period (1 + 2N)a along each coordinate.
In that space, the (image of the) momentum operator acts according to:

p̂Ψφ
λ (x) = h

i2π∇Ψφ
λ (x)

The dynamic of the free fields on the lattice is also identical to the usual dynamic of
the free fields on the continuum in the box

]
−(N + 1

2 )a, (N + 1
2 )a
[3 with periodical

boundary conditions.

1.5 Many particles states

The quantum state |Ψ〉 in which each point n is being occupied by Nφ
n,λ particles

of each type φ in each spin state λ is written:

|Ψ〉 =
∣∣∣(Nφ

n,λ)
〉

and is called a “localized state”. We postulate that a many particles state is given
by any linear combination of the form:

|Ψ〉 =
∑

(Nφ
n,λ

)

Ψ
(

(Nφ
n,λ)

) ∣∣∣(Nφ
n,λ)

〉
Nφ

n,λ ∈ [0, Nmax
φ ]
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where the (finite) integer Nmax
φ is the maximum occupation number of the field φ.

The set of all these vectors, taken as an orthonormal basis, forms a finite dimen-
sional Hilbert space given by:

H :=
⊥⊕

(Nφ
n,λ

)

C
∣∣∣(Nφ

n,λ)
〉

and the basis of the localized states is called “position basis”.
Remark For fermions, we have experimentally Nmax

φ = 1. For bosons, no
upper limit of the occupation number is experimentally known; a lower limit of
about Nmax

γ & 1021 for photons has been reached experimentally by high intensity
lasers.

1.6 Creation and annihilation operators
Definition The annihilation operators are given by:

âφn,λ

∣∣∣(Nφ
n,λ)

〉
:=
{ ∣∣∣(Nφ

n,λ)− 1φn,λ
〉

if Nφ
n,λ > 0

0 otherwise

and the creation operators by:

âφ
†
n,λ

∣∣∣(Nφ
n,λ)

〉
:=
{ ∣∣∣(Nφ

n,λ) + 1φn,λ
〉

if Nφ
n,λ < Nmax

φ

0 otherwise

The (hypothetical) state of the universe in which no particles are present is
written:

|Ψ〉 = |Ω〉 :=
∣∣∣(0φn,λ)

〉
Remark The annihilation (resp. creation) operators form a (finite) set of gen-

erators of a commutative algebra A (resp. A†). Any state of the universe can be
obtained by applying creation operators on the vacuum according to:

|Ψ〉 = Ψ̂† |Ω〉

Ψ̂† :=
∑

(Nφ
n,λ

)

Ψ
(

(Nφ
n,λ)

) ∏
φ,n,λ

(
âφ
†
n,λ

)Nφ
n,λ

associating thus an operator Ψ̂† ∈ A† to each vector |Ψ〉 ∈ H canonically.
Commentaries We are defining here at purpose very basic creation and an-

nihilation operators. The normalization factor relevant for boson fields and the
antisymmetry factor relevant for fermion fields are included explicitly in the interac-
tion Hamiltonian, e.g. in the photon spinor operators defined in appendix C.1 and
in the Dirac spinor operators defined in appendix C.3.



18

1.7 Plane wave field modes
Definition Creation and annihilation operators can also be defined for the plane
wave modes of the field by:

âφq,λ := (1 + 2N)−3/2
∑

n

exp (−i2πn · q) âφn,λ

âφ
†
q,λ := (1 + 2N)−3/2

∑
n

exp (i2πn · q) âφ
†
n,λ

Note that this definition can be extended to all q ∈ R3. The plane wave states of
the field are then defined by:

∣∣∣(Nφ
q,λ)

〉
:=

∏
φ,q,λ

(
âφ
†
q,λ

)Nφ
q,λ

|Ω〉

These vectors form an orthonormal basis of the Hilbert space H called the “momen-
tum basis” and we will use the notation:

|Ψ〉 =
∑

(Nφ
q,λ

)

Ψ̃
(

(Nφ
q,λ)

) ∣∣∣(Nφ
q,λ)

〉

Remark The decomposition of the plane wave state
∣∣∣(N ′φq,λ)

〉
on the position

basis is given by:

〈
(Nφ

n,λ)|(N ′φq,λ)
〉

=

∏
φ,λ

δ
(
N ′

φ
λ −N

φ
λ

)ψ ((qφ,λj ), (nφ,λj )
)

ψ
(

(qφ,λj ), (nφ,λj )
)

:=
∏
φ,λ

Nφ
λ
6=0

(1 + 2N)−3Nφ
λ
/2∏

n N
φ
n,λ!

∑
σ∈S

N
φ
λ

Nφ
λ∏

j=1
exp

(
i2πnφ,λσj · q

φ,λ
j

)

where we use the notations N ′φλ :=
∑

q N
′φ
q,λ and Nφ

λ :=
∑

n N
φ
n,λ, where SNφ

λ

denotes the symmetric group of order Nφ
λ and where we have chosen for each mode

(φ, λ) of the field the families (nφ,λj ) and (qφ,λj ) so that:∣∣∣(Nφ
n,λ)

〉
=

∏
φ,λ,j

âφ
†
nφ,λ
j

,λ |Ω〉∣∣∣(N ′φq,λ)
〉

=
∏
φ,λ,j

âφ
†
qφ,λ
j

,λ |Ω〉

In the definition of ψ
(

(qφ,λj ), (nφ,λj )
)
, we used for convenience the symbols Nφ

n,λ

and Nφ
λ , which can be defined as a function of (nφ,λj ) with Nφ

n,λ :=
∣∣∣{j | nφ,λj = n}

∣∣∣.
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1.8 Particle number operators
Definition The particle number operators are defined by:

N̂φ
n,λ

∣∣∣(Nφ
n,λ)

〉
:= Nφ

n,λ

∣∣∣(Nφ
n,λ)

〉
N̂φ

q,λ

∣∣∣(Nφ
q,λ)

〉
:= Nφ

q,λ

∣∣∣(Nφ
q,λ)

〉
The total particle number operator is defined as the (finite) sum:

N̂ :=
∑
φ,n,λ

N̂φ
n,λ =

∑
φ,q,λ

N̂φ
q,λ

Its eigenspace for the eigenvalue N is written HN and its elements are called “N
particle states” of the field. The Hilbert space can be decomposed into a (finite) sum
of the form:

H =
⊥⊕
N

HN

The maximum number of particles in a N particle state is given by N = (1 +
2N)3∑

φ,λN
max
φ .
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Chapter 2

Hamiltonian evolution

2.1 Schrödinger equation
We postulate that the state of the quantum field evolves according to an equation
of the form:

d
dt |Ψ〉 = −i2π 1

hĤ |Ψ〉

called “Schrödinger equation” where Ĥ is the (time independent) Hamiltonian op-
erator of the field. This operator is supposed to be hermitian and is therefore di-
agonalizable (with real eigenvalues) on the finite dimensional Hilbert space H. The
equation can also be integrated as:

|Ψ(t)〉 = Û(t, t0) |Ψ(t0)〉

Û(t, t0) := exp
(
−i2π t− t0h Ĥ

)

2.2 Kinetic energy Hamiltonian
The Hamiltonian operator of the field can be separated into a kinetic energy Hamil-
tonian depending only on the momentum of the particles and an interaction term as
follows:

Ĥ = Ĥ0 + Ĥ′

In the lattice reference frame, the kinetic energy Hamiltonian is given by:

Ĥ0 :=
∑
φ,q,λ

Eφq N̂
φ

q,λ

In another reference frame, moving with a velocity v relative to the lattice, this
operator is given by:

Ĥ0 :=
∑
φ,q,λ

γ

{
Eφq −

h
aq · v

}
N̂φ

q,λ
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2.3 Interaction picture
The kinetic energy Hamiltonian can be integrated as:

Û0(t, t0) := exp
(
−i2π t− t0h Ĥ0

)
The state of the quantum field in the interaction picture is defined in such a way

that it would be a time constant if the interaction term Ĥ′ vanishes:

|ΨI〉 := Û0(0, t) |Ψ〉

The Hamiltonian operator in the interaction picture is defined is such a way that
the state of the quantum field in the interaction picture obeys following Schrödinger-
like equation, where the Hamiltonian is time-dependent:

d
dt |ΨI〉 = −i2π 1

hĤI |ΨI〉

ĤI := Û0(0, t)Ĥ′Û0(t, 0)

The integration of this equation yields to:

|ΨI(t)〉 = ÛI(t, t0) |ΨI(t0)〉

where the evolution operator in the interaction picture is given by a series of the
form (assuming t > t0):

ÛI(t, t0) := 1 +
∞∑
n=1

Û(n)
I (t, t0)

Û(n)
I (t, t0) :=

(
−i2π

h

)n ∫
t>tn>···>t1>t0

dt1 · · · dtn

Û0(0, tn)Ĥ′Û0(tn, tn−1) · · · Û0(t2, t1)Ĥ′Û0(t1, 0)

The evolution operator in the interaction picture verifies:

ÛI(t, t0) = Û0(0, t)Û(t, t0)Û0(t0, 0)

The usual evolution operator can also be written too as a series of the form:

Û(t, t0) :=
∞∑
n=0

Û(n)(t, t0)

Û(0)(t, t0) := Û0(t, t0)

Û(n)(t, t0) :=
(
−i2π

h

)n ∫
t>tn>···>t1>t0

dt1 · · · dtn

Û0(t, tn)Ĥ′Û0(tn, tn−1) · · · Û0(t2, t1)Ĥ′Û0(t1, t0)
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2.4 Transition amplitudes
In scattering experiments, the evolution operator in the interaction picture is often
called “scattering operator”. In this context, cross sections are usually calculated
in the limit t0 → −∞ and t → +∞, so the variables t0 and t are implicit in the
notation:

Ŝ := ÛI(t, t0)
Its matrix elements, called “scattering amplitudes” and written:

Sfi := 〈Ψf | Ŝ |Ψi〉
= 〈Ψf | ÛI(t, t0) |Ψi〉

can be developed in a series of the form (assuming t > t0):

Sfi =
∞∑
n=0

S(n)
fi

S(0)
fi := 〈Ψf |Ψi〉

S(n)
fi :=

(
−i2π

h

)n ∫
t>tn>···>t1>t0

dt1 · · · dtn

〈Ψf | Û0(0, tn)Ĥ′Û0(tn, tn−1) · · · Û0(t2, t1)Ĥ′Û0(t1, 0) |Ψi〉

For plane wave states |Ψi〉 =
∣∣∣(Niφq,λ)

〉
and |Ψf 〉 =

∣∣∣(Nfφq,λ)
〉
, they are di-

rectly related to the matrix elements of the evolution operator, called “transition
amplitudes”, by:

Ufi(t, t0) = exp (−i2π(tEf − t0Ei)/h) Sfi
Ufi(t, t0) := 〈Ψf | Û(t, t0) |Ψi〉

Ei := 〈Ψi| Ĥ0 |Ψi〉
Ef := 〈Ψf | Ĥ0 |Ψf 〉

The transition amplitude from a plane wave state |Ψi〉 =
∣∣∣(Niφq,λ)

〉
to a localized

state |Ψf 〉 =
∣∣∣(Nfφn,λ)

〉
can in turn be written as:

Ufi(t, t0) =
∑

(Nfφq,λ)

Sfiexp (i2πt0Ei/h)ψ
(

(qφ,λj ), (nφ,λj ), t
)

with:

ψ
(

(qφ,λj ), (nφ,λj ), t
)

:=
∏
φ,λ

Nf
φ
λ
6=0

(1 + 2N)−3Nfφλ/2∏
n Nf

φ
n,λ!

∑
σ∈S

Nf
φ
λ

Nf
φ
λ∏

j=1

exp
(

i2π(nφ,λσj · q
φ,λ
j − Eφ

qφ,λ
j

t/h)
)
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where the summation runs over plane wave states (Nfφq,λ) such that
∑

q Nf
φ
q,λ =∑

n Nf
φ
n,λ for each mode (φ, λ) of the field, where we use the notations Sfi :=〈

(Nfφq,λ)
∣∣∣ Ŝ

∣∣∣(Niφq,λ)
〉
and Nfφλ :=

∑
n Nf

φ
n,λ, where SNf

φ
λ
denotes the symmetric

group of order Nfφλ and where we have chosen for each mode (φ, λ) of the field the
families (nφ,λj ) and (qφ,λj ) so that:∣∣∣(Nfφn,λ)

〉
=

∏
φ,λ,j

âφ
†
nφ,λ
j

,λ |Ω〉∣∣∣(Nfφq,λ)
〉

=
∏
φ,λ,j

âφ
†
qφ,λ
j

,λ |Ω〉

In the definition of ψ
(

(qφ,λj ), (nφ,λj ), t
)
, we used for convenience the symbols Nfφn,λ

andNfφλ, which can be defined as a function of (nφ,λj ) withNfφn,λ :=
∣∣∣{j | nφ,λj = n}

∣∣∣.
The transition amplitude from any initial state |Ψi〉 to a localized final state

|Ψf 〉 =
∣∣∣(Nfφn,λ)

〉
is finally given by:

Ufi(t, t0) =
∑

(Niφq,λ)

∑
(Nfφq,λ)

SfiΨ̃i

(
(Niφq,λ)

)
exp (i2πt0Ei/h)ψ

(
(qφ,λj ), (nφ,λj ), t

)
with the same notations.

2.5 Scattering matrix
The scattering matrix can be developed quite easily on the basis of the plane wave
states, i.e. by developing the initial and final states as:

|Ψi〉 =
∑

(Nφ
q,λ

)

Ψ̃i

(
(Nφ

q,λ)
) ∣∣∣(Nφ

q,λ)
〉

|Ψf 〉 =
∑

(Nφ
q,λ

)

Ψ̃f

(
(Nφ

q,λ)
) ∣∣∣(Nφ

q,λ)
〉

With these notations, we have to the zeroth order:

S(0)
fi =

∑
(N0

φ
q,λ

)

Ψ̃f

(
(N0

φ
q,λ)

)
Ψ̃i

(
(N0

φ
q,λ)

)
and to the n-th order:

S(n)
fi =

∑n

k=0
(Nkφq,λ)

Ψ̃f

(
(Nnφq,λ)

)
Ψ̃i

(
(N0

φ
q,λ)

)
S(n)
n,...,0

S(n)
n,...,0 := exp

(
i2π t0h (En − E0)

)( n∏
k=1

H ′k,k−1

)
S(n)
t−t0 (En, . . . , E0)
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S(n)
t−t0 (En, . . . , E0) :=

(
−i2π

h

)n ∫
t−t0>tn>···>t1>0

n∏
k=1

exp
(

i2π tkh (Ek − Ek−1)
)

dtn · · · dt1

The functions S(n)
t−t0 (En, . . . , E0) can be calculated recursively according to:

S(1)
t−t0 (E1, E0) = −i2π t− t0h esinc

(
t− t0

h (E1 − E0)
)

S(n+1)
t−t0 (En+1, En, . . . , E0) = 1

En+1 − En

(
S(n)
t−t0 (En+1, . . . , E0)

−exp
(

i2π t− t0h (En+1 − En)
)

S(n)
t−t0 (En, . . . , E0)

)
where the esinc function is defined as in appendix A.2. To the second order, for
instance, we have:

S(2)
t−t0 (E2, E1, E0) = −i2π t− t0h exp

(
i2π t− t0h (E2 − E0)

)
1

E2 − E1[
esinc

(
t− t0

h (E0 − E2)
)
− esinc

(
t− t0

h (E0 − E1)
)]

2.6 Perturbative development
The explicit perturbative development of the transition amplitude between two plane
wave states |Ψi〉 =

∣∣∣(Niφq,λ)
〉
and |Ψf 〉 =

∣∣∣(Nfφq,λ)
〉
is therefore given by:

U(0)
fi (t, t0) = exp

(
−i2π t− t0h Ef

)
δf,i

U(1)
fi (t, t0) = −i2π t− t0h exp

(
−iπ t− t0h (Ef + Ei)

)
sinc

(
t− t0

h (Ef − Ei)
)
H ′f,i

U(n)
fi (t, t0) = exp

(
−i2π t− t0h Ef

) ∑n

k=0
(Nkφq,λ)

S(n)
t−t0 (En, . . . , E0)

n∏
k=1

H ′k,k−1

where the sinc function is defined as in appendix A.1, where we take in the last sum
(N0

φ
q,λ) = (Niφq,λ) and (Nnφq,λ) = (Nfφq,λ) and where we have:

S(n)
t−t0 (En, . . . , E0) :=

(
−i2π

h

)n ∫
t−t0>tn>···>t1>0

n∏
k=1

exp
(

i2π tkh (Ek − Ek−1)
)

dtn · · · dt1
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More generally, the explicit perturbative development of the transition amplitude
from any initial state |Ψi〉 to a localized final state |Ψf 〉 =

∣∣∣(Nfφn,λ)
〉
is given by:

U(0)
fi (t, t0) =

∑
(Nfφq,λ)

Ψ̃i

(
(Nfφq,λ)

)
ψ
(

(qφ,λj ), (nφ,λj )
)

exp
(
−i2π t− t0h Ef

)

U(1)
fi (t, t0) = −i2π t− t0h

∑
(Niφq,λ)

Ψ̃i

(
(Niφq,λ)

) ∑
(Nfφq,λ)

ψ
(

(qφ,λj ), (nφ,λj )
)

exp
(
−iπ t− t0h (Ef + Ei)

)
sinc

(
t− t0

h (Ef − Ei)
)
H ′f,i

U(n)
fi (t, t0) =

∑
(Niφq,λ)

Ψ̃i

(
(Niφq,λ)

) ∑
(Nfφq,λ)

ψ
(

(qφ,λj ), (nφ,λj )
)

exp
(
−i2π t− t0h Ef

) ∑n

k=0
(Nkφq,λ)

S(n)
t−t0 (En, . . . , E0)

n∏
k=1

H ′k,k−1

where the summation runs over plane wave states (Nfφq,λ) such that
∑

q Nf
φ
q,λ =∑

n Nf
φ
n,λ for each mode (φ, λ) of the field, and where we use the notation:

ψ
(

(qφ,λj ), (nφ,λj )
)

:=
∏
φ,λ

Nf
φ
λ
6=0

(1 + 2N)−3Nfφλ/2∏
n Nf

φ
n,λ!

∑
σ∈S

Nf
φ
λ

Nf
φ
λ∏

j=1
exp

(
i2πnφ,λσj · q

φ,λ
j

)
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Chapter 3

Mental states

On the other hand I think I can safely say that
nobody understands quantum mechanics.

Richard Feynman,
The Character of Physical Law [9]

3.1 The mind-body problem
Since the end of the second World War and the translation of the intellectual center of
the scientific community from Europe to the United States of America, materialism,
i.e. the complete reduction of our experience of mind to purely material processes,
has become the philosophical conviction of mainstream physicists, although they still
may have opposite religious beliefs as private persons. Of course, it doesn’t make
any doubt that the biological activity of human and similar animal brains is involved
in the processing of external and internal stimuli, and it is reasonable to believe that,
at the material level, conscious thinking is the emerging result of an intensive and
highly parallelized information processing activity by the brain’s neural network.
Nevertheless, “mind”, i.e. the form of our experience of the world, with our feelings,
our body schema, memories seen with the mind’s eye, melodies imagined in the
mind’s ear... is just not the same as the neural activity of an individual body (which
is anyhow hardly identifiable quantum physically). Determining the relation between
these two realities is the essence of the mind-body problem, which has become the
most various answers over the ages. The usual divergence points arise about the
questions: Do both realities exist at all, or is one of them a mere illusion? Are they
independent of each other and just exist as parallel realities, or are there divergences
and a mutual influence in the one, the other or both directions? In this old debate,
Quantum Field Theory introduces the new idea that a mutual influence doesn’t have
to be a deterministic causal influence but also could be a probabilistic one, so that
neither “mind” nor “body” have to be kind of a subordinated slave of its counterpart,
but retain to some extent a form of “freedom” under its influence. I think this idea
should have the potential to take some heat out of the debate.
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3.2 Subjective experience

Each of us has a direct access to his own subjective experience and know how it “feels
like” to have conscious thoughts, so I will only expose a few reflections in this place. I
think that any subjective experience should be considered in its “organic” unity, that
picking out single conscious thoughts and considering that the subjective experience
is simply composed of these should be considered as an oversimplified and inadequate
view. Within this “organic” unity, however, the intensity of consciousness may vary,
focusing our awareness on some aspects rather than on others. The border between
conscious and unconscious thoughts is therefore not really clear to ourselves, as there
is a slow transition made up of more or less subconscious thoughts of decreasing
intensity. So when I say “subjective experience”, I mean in principle the unity of all
conscious and subconscious thoughts, although we’re not quite sure of where they
end. They will, in general, contain among other things representations of a body,
of its activity, of its environment, of past experiences... as well as representations
of time, which make up our feeling of being continuously ourselves in the continuity
of time. But I believe that this feeling of permanence of the subject is a mere
illusion, for two reasons: First, this feeling is experienced in every single instant of
consciousness; we could by no mean find out if we really have experienced other
instants of consciousness “before” (and if there is a such thing as time in the first
place) and if these instants of consciousness correspond to our current memories or
not, so this feeling of permanence could be an illusion. In fact, if I would suddenly
have the subjective experiences of another subject (with its own memories and not
mine), I wouldn’t even notice it! Second, subjective experience seems to cease as
“our” body is dreamless sleeping, swoon or eventually die, so I think its permanence
is discarded by common experience. Therefore, I don’t believe that there is a such
thing as a subject, or a soul, constituting a fundamental entity of the mental world,
which would have an existence of its own and evolve across time, and I will only refer
to instantaneous subjective experiences, which are not related to each other across
time in the form of a personal history at a fundamental level.

3.3 Mental state

The states of the mental world are supposed to be experienced by a various number
of subjects. A state M of the mental world can also be described by the number
Nm of subjects having each possible subjective experience m. An arbitrary sequence
(Nm), however, doesn’t necessarily correspond to a possible mental state M. In fact,
as a consequence of the correspondence between mental and quantum states defined
subsequently and of the finite dimensionality of the Hilbert space of the quantum
states, there must be a finite number of possible mental states, and a fortiori of
possible subjective experiences. The set of all possible mental states is writtenM.
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3.4 Physical realization of mental states
The correspondence between mental and quantum states is given by a Hilbert sub-
space HM, called “mental subspace”, associated to each possible mental state M in
such a way that these subspaces verify:

H =
⊥⊕
M

HM

Each vector |Ψ〉 ∈ HM \ {0} is a quantum state of the universe in which the mental
state M is being experienced. Knowing the correspondence between mental states
and mental subspaces is in essence solving the mind-body problem. As a working
hypothesis, I shall assume that a mental state M = (Nm) is being realized phys-
ically by any quantum state describing a universe containing, for each subjective
experience m, exactly Nm human or animal brains presenting the specific activity
pattern corresponding to m. The task of describing the possible subjective experi-
ences belongs in principle to psychology or philosophical phenomenology, whereas
the characterization of the corresponding activity patterns of the brain is the aim of
cognitive neuroscience.

In mathematical terms, this hypothesis can be modeled as follows. First, the
mental state MΩ := (0m), in which no subject is having any subjective experience, is
supposed to be possible, i.e. the corresponding subspace HMΩ is supposed not to be
reduced to the zero subspace. Then, for each possible subjective experience m, there
is supposed to be a finite family of brain creation operators (Ψ̂α

m

†
) in A†, which are

creating a single brain with an activity pattern corresponding to m, such that:

H1m
=
⊥⊕
α

Ψ̂α
m

†
HMΩ

Finally, for every mental state M, noting M+ 1m the mental state in which a single
further subject is having the subjective experience m, the corresponding subspaces
are supposed to verify:

HM+1m
=
∑
α

Ψ̂α
m

†
HM

These relations define all the subspaces HM recursively as a function of HMΩ and
of the operators Ψ̂α

m

†
. If a subspace defined in this way happens to be zero (be-

cause of the existence of a maximum occupation number for single field modes), the
corresponding mental state is impossible.

Given two mental states M = (Nm) and M′ = (N ′m), we define the partial
order relation M′ ≥M by ∀m, N ′m ≥ Nm. The subspace H+

M of the quantum states
corresponding to mental states where at least Nm subjects are having each subjective
experience m can be defined, with this notation, by:

H+
M :=

⊥⊕
M′≥M

HM′
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Commentaries The different brain creation operators Ψ̂α
m

†
corresponding to the

same subjective experience m may differ for instance by a translation or a rotation of
the brain, by any modification of its physical environment which doesn’t involve the
creation of a second brain, or by any internal modification of the quantum state of the
brain itself, insofar as this doesn’t influence the associated conscious thoughts. We
could think for instance of neurophysiological processes involved in the unconscious
brain activity or of irrelevant low-level biochemical processes.
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Chapter 4

Stochastic evolution

It sounded quite a sensible voice, but it just said,
“Two to the power of one hundred thousand to
one against and falling,” and that was all.

Douglas Adams,
The Hitchhiker’s Guide to the Galaxy [1]

4.1 Collapse and mental state selection
In the joint evolution of the mental and quantum states of the universe, I suppose
that the quantum state |Ψ〉 periodically becomes randomly projected into one of the
mental subspaces HM, corresponding to a given mental state M, with a probability
given by:

P (M) = 〈Ψ| Π̂M |Ψ〉
〈Ψ|Ψ〉

where Π̂M is the orthogonal projection operator on HM. Furthermore, I suppose
that this projection corresponds to the fact that, in the mental world, the mental
state M = (Nm) is being experienced, i.e. that Nm subjects are having each possible
subjective experience m. We call the material part of this process “collapse” of the
quantum state of the universe and its mental counterpart “selection” of the mental
state. The operators Π̂M are called “collapse operators”. As a working hypothesis,
we assume that the period τ of this process is of the order of the Plank time:

τ ≈
√

4πGh/c5 ≈ 4.8 10−43 s

4.2 Mental evolution
Fundamentally, Quantum Field Theory also defines the probability that any given
succession of mental states be experienced, an initial quantum state being given.
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Explicitly, for an initial quantum state |Ψi〉 6= 0 at time ti = 0, the probability
Pt(M0, . . . ,Mt; |Ψi〉), where t ∈ N, that a given sequence M0, . . . ,Mt is being
experienced at times 0, . . . , tτ , reads for t = 0:

P0(M0; |Ψi〉) = 〈Ψi| Π̂M0 |Ψi〉 / 〈Ψi|Ψi〉

for t = 1:

P1(M0,M1; |Ψi〉) = 〈Ψi| Π̂M0Û
†
τ Π̂M1Ûτ Π̂M0 |Ψi〉 / 〈Ψi|Ψi〉

where Ûτ := exp
(
−i2πĤτ/h

)
, and more generally for t ≥ 2:

Pt(M0, . . . ,Mt; |Ψi〉) = 〈Ψi| Π̂M0Û
†
τ Π̂M1 · · · Û†τ Π̂Mt

Ûτ · · · Π̂M1Ûτ Π̂M0 |Ψi〉 / 〈Ψi|Ψi〉

Remarks The probability laws obey following factorization rule, where t′ ≤ t:

Pt(M0, . . . ,Mt; |Ψi〉) = Pt′(M0, . . . ,Mt′ ; |Ψi〉)

Pt−t′(Mt′ , . . . ,Mt; Π̂Mt′ Ûτ · · · Π̂M1Ûτ Π̂M0 |Ψi〉)

If the initial vector state isn’t exactly known, but belongs to a given subspace
Hi, averaging on an orthonormal basis of this subspace leads to:

〈Pt(M0, . . . ,Mt; |Ψi〉)〉Hi = TrHiΠ̂M0Û
†
τ Π̂M1 · · · Û†τ Π̂MtÛτ · · · Π̂M1Ûτ Π̂M0/dimHi

The total probability Pt(Mt; |Ψi〉) that a given mental state Mt is being expe-
rienced at time tτ , where t ∈ N, reads for t = 0:

P0(M0; |Ψi〉) = P0(M0; |Ψi〉)

and more generally for t ≥ 1:

Pt(Mt; |Ψi〉) =
∑
Mt−1

· · ·
∑
M0

Pt(M0, . . . ,Mt; |Ψi〉)

Complements In the case where the actually experienced mental state has a
relatively high probability, our subjective experience may give us some clues about
the physics of the world we live in; on the opposite, if our mental state has a very
low probability, our subjective experience has very little to do with the laws of the
physical world and we live in a mere illusion of knowing something about the material
reality – without having any mean of noticing it. This dilemma is very well known
of particle physicists, who have to accept they cannot make more precise statements
about reality than, for instance, “in the context of the standard model and in the
presence of a sequential fourth family of fermions with high masses [...] a Higgs boson
with mass between 144 and 207 GeV/c2 is ruled out at 95% confidence level” [4].
Any physical model can also be conventionally, but not definitely, “ruled out” if it
predicts the observed results with a probability considered to be too low.
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4.3 Transition probability
We consider, to simplify the discussion, a repeated experiment with a single possible
outcome, which may have been realized or not after a given duration tτ . Notice that
this duration doesn’t correspond to the instant at which some physical event oc-
curs, but is a sufficiently long duration after which the experimenter can consciously
remember of having (just) observed the expected outcome or not.

The possible mental states corresponding to the beginning of the experiment are
writtenMi and the initial state of the quantum fields is also an element of the Hilbert
subspace Hi given by:

Hi =
⊥⊕
Mi

HMi

The possible mental states corresponding to the measurement of the given outcome
resp. of its absence are written M+

f resp. M−f . If the experiment works correctly,
the final state of the quantum fields is, after measurement, an element of either of
the Hilbert subspaces H+

f or H−f given by:

H±f =
⊥⊕

M±
f

HM±
f

If the experiment fails for some reason (e.g. if some measuring device is getting
damaged during the experiment), the final state of the quantum fields is orthogonal
to H+

f ⊕H
−
f .

The absolute probability of measuring the given outcome resp. its absence is
given by:

P
(
Hi → H±f

)
=
∑
Mt−1

· · ·
∑
M1

TrHiÛ†τ Π̂M1 · · · Û†τ Π̂f±Ûτ · · · Π̂M1Ûτ/dimHi

where Π̂f± =
∑

M±
f

Π̂M±
f
. The conditional probability of measuring the given out-

come if the experiment doesn’t fail is then given by:

T P
(
Hi → H+

f

)
=

P
(
Hi → H+

f

)
P
(
Hi → H+

f

)
+ P

(
Hi → H−f

)
and we call it “transition probability” from Hi to H+

f .
If the experiment is conceived in such a way that the studied system is isolated

from the observer for the duration of the experiment until it interacts with some
measurement apparatus, the experiment is considered to have failed if the observer
has gained some information about the studied system before it interacts with this
apparatus. An intermediate observation of the system, as it would leave a permanent
trace in the memory of the observer, would lead with a vanishingly small probability
to a final mental state in which the observer isn’t conscious of having made this
observation. The only intermediate mental states M1, . . . ,Mt−1 to be considered in
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the above sums (i.e. which haven’t a vanishingly small contribution to the transition
probability) correspond also to projectors that don’t affect the Hamiltonian evolution
of the studied system. In that case, the absolute probability of measuring the given
outcome resp. its absence can be approximated by:

P
(
Hi → H±f

)
≈ TrHiÛ

†
tτ Π̂f±Ûtτ/dimHi

and can be written as a sum resp. a mean on quantum states forming an orthonormal
basis of H±f resp. Hi:

P
(
Hi → H±f

)
≈

∑
f

〈P (i→ f)〉i

P (i→ f) := |Ufi(tτ , 0)|2

In this expression, the (absolute) transition probabilities P (i→ f) between two
quantum states can be developed in series of the form:

P (i→ f) =
∞∑
n=0
P(n) (i→ f)

P(n) (i→ f) :=
∑

n1+n2=n
U(n1)
fi (tτ , 0)U(n2)

fi (tτ , 0)

If i and f are plane wave states, these terms can be written using the scattering
matrix as:

P(n) (i→ f) :=
∑

n1+n2=n
S(n1)
fi S(n2)

fi

4.4 Leading order transition probability

The general form of the transition probability between plane wave modes of the field
can be given without knowing much about the interaction term Ĥ′. We assume here
that the initial and final states of the field are plane waves of the form:

|Ψi〉 =
∣∣∣(Niφq,λ)

〉
|Ψf 〉 =

∣∣∣(Nfφq,λ)
〉

The first interesting terms in the development of the transition probability are given
in that case by:

P(0) (i→ f) := S(0)
fi S(0)

fi = δf,i

P(1) (i→ f) := S(0)
fi S(1)

fi + S(1)
fi S(0)

fi = 0
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P(2) (i→ f) := S(0)
fi S(2)

fi + S(1)
fi S(1)

fi + S(2)
fi S(0)

fi

= (2π)2 t− t0
h

∣∣H ′f,i∣∣2 δ(2)
t−t0 (Ef − Ei)

−δf,i(2π)2 t− t0
h

∑
(N1

φ
q,λ

)

∣∣H ′1,i∣∣2 δ(2)
t−t0 (E1 − Ei)

where the nascent delta function δ(2)
t−t0 (E) is defined as in appendix A.3.

4.5 Higher order transition probability

To the order n ≥ 2, the transition probability between plane wave states
∣∣∣(Niφq,λ)

〉
and

∣∣∣(Nfφq,λ)
〉
is given by:

P(n) (i→ f) :=
∑

n1+n2=n
S(n1)
fi S(n2)

fi

= δf,i
∑n−1

k=1
(Nkφq,λ)

(
S(n)
i,...,i + S(n)

i,...,i

)

+
∑

n1+n2=n
n1,n2≥1

S(n1)
fi S(n2)

fi

The first term vanishes for f 6= i. The development of the last term involves a “closed
loop” of length n from i to i over f , i.e. a summation over n− 2 intermediate states∣∣∣(Nkφq,λ)

〉
, where k ∈ [−n1, n2], (N0

φ
q,λ) = (Niφq,λ) and (N−n1

φ
q,λ) = (Nn2

φ
q,λ) =

(Nfφq,λ), and can be written as:

∑
n1+n2=n
n1,n2≥1

∑n2

k=−n1
(Nkφq,λ)

(
n2−1∏
k=−n1

H ′k+1,k

)
S(n1)
t−t0 (E−n1 , . . . , E0)S(n2)

t−t0 (En2 , . . . , E0)

To the third order, for instance, the transition probability for f 6= i reads:

P(3) (i→ f) = (2π)3δ
(1)
t−t0 (Ef − Ei)∑

(N1
φ
q,λ

)

[
=
(
H ′i,fH

′
f,1H

′
1,i
)
δ

(1)
t−t0 (Ef − E1) δ(1)

t−t0 (E1 − Ei)

+<
(
H ′i,fH

′
f,1H

′
1,i
) δ(1)

t−t0 (Ef − Ei)− cos
(
π t−t0h (Ef − E1)

)
δ

(1)
t−t0 (E1 − Ei)

π(Ef − E1)

]

where the nascent delta function δ(1)
t−t0 (E) is defined as in appendix A.3.
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4.6 Ideal experimental setup

We consider a scattering experiment designed to produce nf particles of type φj , of
wave vector qj and of spin state λj . To detect them all, a set of nf particle detectors
Dj is being used and we consider a single alternative: either all the detectors are
activated or at least one of them isn’t. The momentum of the detected particles
is measured with an uncertainty given by the domain δPj of the momentum space
in which particle j could be found without changing the measurement result. The
corresponding subset δQj of values of qj is given in the lattice reference frame by:

δQj =
(
[−N,N]
1 + 2N

)3
∩ a

hδPj

We assume that the corresponding subspace δF of H is given by:

δF =
⊥⊕

(δqj)

CΨ̂†f+(δqj)
|O〉

Ψ̂†f+(δqj)
:=

∏
j

âφj
†
qj+δqj ,λj

where the summation goes over all the δqj verifying qj + δqj ∈ δQj and where |O〉
describes the experimental setup, including measuring devices and the observer.

The probability that all the detectors are activated is then given by:

P (i→ δF) :=
∑
(δqj)

P
(
i→ f + (δqj)

)

If the transition probability P
(
i→ f + (δqj)

)
, as a function of (δqj), admits a

continuation on R3nf , an approximation of this sum can be obtained by taking the
corresponding integral:

P (i→ δF) ≈
∫∏

j
δPj

P
(
i→ f + (δqj)

) (
(1 + 2N) a

h

)3nf
d3p1 · · · d3pnf

where δqj := a
hpj − qj in the lattice reference frame.

In particular, if
∣∣∣H ′f+(δqj),i

∣∣∣2 admits such a continuation and if i and f could be
approximated by plane wave states, the leading order transition probability could
be approximated, for i /∈ δF , by:

P(2) (i→ δF) ≈
∫∏

j
δPj

(2π)2 t− t0
h

∣∣∣H ′f+(δqj),i

∣∣∣2 δ(2)
t−t0

(
Ef+(δqj) − Ei

)
(

(1 + 2N) a
h

)3nf
d3p1 · · · d3pnf
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4.7 Quantum measurement
Let us consider a simple thought experiment in order to illustrate how measurement
processes take place: An excited atom decays by emitting a photon, which is detected
by a photomultiplier read by an observer. In the initial state, at time t0, the atom
has just been switched to its excited state and hasn’t decayed yet, the measurement
apparatus is indicating that it hasn’t yet detected any photon and the observer is
waiting for the detector to get activated. We symbolize this situation by:

?
The decay of the excited atom into a stable atom and a photon (via the QED
processes described in chapter 8) first brings it into a quantum superposition of
states, where both states coexist as a linear combination within the quantum state
|ψ〉 of the universe. In both cases, the measurement apparatus is still inactive so far
and the observer waiting. We symbolize this situation by:

? + ?
Supposing, to simplify, that the photomultiplier has a detection efficiency of 100%,
it gets activated with certainty by the incoming photon after a certain delay ∆t,
coming thus itself into a quantum superposition of states. At the same time, the
excited atom populates again the decayed atom state, as in the preceding step. In
all three cases, the observer is still waiting that far. We symbolize this situation by:

? + ? + ?
Finally, the observer is becoming aware of the fact that the detector has been acti-
vated and comes herself into a quantum superposition of states, so that four qualita-
tively different states coexist as a linear combination within the quantum state |ψ〉
of the universe. We symbolize this situation by:

? + ? + ? + !
This (purely material) situation lasts until the next process of collapse and mental
state selection takes place. The experienced consciousness state of the observer is
then, randomly, either one of “I am still waiting for the detector to get activated” or
“I have seen the detector becoming activated”. In the first case, the quantum state
of the universe becomes again:

? + ? + ?
i.e. the detector has still been activated, but the observer didn’t yet notice it. In
the second case, the state of the universe becomes:

!
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and the atom has definitely decayed. The probability δP of this event to occur is
very small, but the process of collapse and mental state selection take place very
often, with a period τ , so that the decay of the atom should eventually be observed.
The leading order approximation of this elementary probability takes the form:

δP ≈ (2π)2 τ

h
∑
f

∣∣H ′f,i∣∣2 δ(2)
t−t0 (Ef − Ei)

where the Coulomb interaction term is supposed to have been shifted into the zeroth
order Hamiltonian operator Ĥ0, where the summation runs over an orthonormal basis
of eigenstates of this operator and where the delta function can be approximated by
the (time independent) density of decay states (with regard to energy) around the
“allowed” decay states conserving zeroth order energy. The duration until the decay
is being observed follows a Poisson law and its mean value is given by the general
formula:

〈t− t0〉 ≈ ∆t+ τ
1− δP
δP

It can be approximated in this case, since δP � 1, by:

〈t− t0〉 ≈ ∆t+ h
[
(2π)2

∑
f

∣∣H ′f,i∣∣2 δ(2)
t−t0 (Ef − Ei)

]−1

Note that this result doesn’t depend on the period τ of the collapse and mental state
selection process.





Part III

Interpretation
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Chapter 5

Metaphysics

As I have said so many times,
God doesn’t play dice with the world.

Albert Einstein,
in Einstein and the Poet [12]

5.1 Spinoza’s philosophy

Since the interpretation of Quantum Field Theory I am about to give has been in-
spired by Spinoza’s classical work The Ethics [18], I shall make here a short presen-
tation of its basic ideas. According to the causalist world view of classical mechanics,
each individual existent thing – an object, a thought – has necessarily a cause which
explains its existence at a given moment. These things are considered to be al-
terations, or “modes”, of some fundamental “substance” constitutive of Nature as
a whole. Since this substance has some of the fundamental properties attributed
to God by Judaic theology – self-caused, free, eternal, infinite (i.e. containing ev-
erything) –, it has been identified by Spinoza to God itself, confounding thus the
concept of ‘God’ with what philosophers traditionally call ‘Nature’. The human in-
tellect conceives the substance, as well as every individual existent thing, under the
two aspects, or “attributes”, of an extended (material) and of a thinking (mental)
thing. This categorization, however, is nothing but a property of the human intellect
and not an intrinsic property of the things themselves. Considered under its material
aspect, a human being, for instance, consists in a body extending in the substance,
i.e. in God, whereas it consists in a mind thinking in God when considered under
its mental aspect. Nevertheless, both are one and the same thing, so that the laws
of Physics – considered to be part of the nature of God – could determine the laws
of Psychology. The knowledge of God, which also encompasses the knowledge of the
world in general and of Man in particular, is therefore considered to be the mind’s
highest good.
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5.2 Quantum metaphysics
Interestingly, Spinoza’s metaphysical concepts can be identified quite straightfor-
wardly with the fundamental notions of Quantum Field Theory, thus providing them
with a naturalistic basis. On the other hand, Quantum Field Theory, generally con-
sidered to be counter-intuitive, paradoxical and hardly understandable, becomes
grounded in a very classical philosophical tradition and should thus become accessi-
ble to a broader range of Science philosophers.

The states (modes) of God (the substance) are evidently identified, under their
material aspect, with the quantum states |Ψ〉 of the universe (the elements of the
Hilbert space H), and, under their mental aspect, with the mental states M (the
elements ofM). The relation between the material and the mental aspects is given
by the decomposition H =

⊕⊥
MHM of the Hilbert space, or equivalently by the

orthogonal projection operators Π̂M, relating each mental state M with the set of all
corresponding quantum states HM. Furthermore, the nature of God encompasses
the laws of Physics, given by the Hamilton operator Ĥ, or more precisely by the
elementary evolution operator Ûτ := exp

(
−i2πĤτ/h

)
. God can finally be defined

as a mathematical structure g given by:

g :=
(
H×M, (Π̂M), Ûτ

)
The states of God, taking the general form ( |Ψ〉,M), are said to be ‘real’ if |Ψ〉 ∈
HM \ {0} and ‘virtual’ otherwise. By extension, we will say that a quantum state
|Ψ〉 6= 0 is ‘real’ if it belongs to one of the subspaces HM. An elementary evolution
step of the state of God proceeds from a real state ( |Ψ〉0,M0), first evolving to a
generally virtual state

(
Ûτ |Ψ0〉,M0

)
and eventually collapsing to one of the real

states
(

Π̂M1Ûτ |Ψ0〉,M1

)
with a probability 〈Ψ0| Û†τ Π̂M1Ûτ |Ψ0〉 / 〈Ψ0|Ψ0〉.
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Chapter 6

Interpretation

6.1 The role of consciousness

As it results from the preceding description of the processes taking place in the
evolution of the state of God, not only the purely material processes described by the
Hamiltonian evolution operator Ûτ , but also the mental processes described by the
collapse operators (Π̂M) play a central role in the evolution of the quantum state |Ψ〉
of the universe. In the following, we will call ‘consciousness state’ any mental stateM
and ‘consciousness’ the phenomenon of experiencing it. This phenomenon must be
very carefully distinguished from the purely material processes of conscious thinking
happening at the neural level within brains, although both are closely related to each
other.

Quantum phenomena, like the superposition of an atom in an excited and a
decayed state, or the superposition of a photodetector in an activated and an un-
activated state – as in the quantum measurement example given in section 4.7 –,
have always proved to be very puzzling to us, because they show that quantum
processes don’t fit within our mental categories, in which a photodetector must be
either activated or not, for instance. This is not a result of a limitation of our in-
telligence that we could overcome by learning to think in a new way corresponding
more adequately to the physical reality. No, at a very fundamental level, there isn’t
and there will never be any subjective experience m corresponding to the superpo-
sition of a brain having “seen” a photodetector both activated and not, although
this superposition does exist at the material level. This inadequacy between our
mental categories and the material reality is a matter of fact having profound con-
sequences for the process of consciousness. The contents of a consciousness state
M cannot simply be a representation of the material reality (even a partial one),
because material reality explores possibilities going far beyond the realm of what
we can grasp with our mental categories. An arbitrary consciousness state M can
only “match” more or less good the current quantum state |Ψ〉 of the universe, the
number 〈Ψ| Π̂M |Ψ〉 / 〈Ψ|Ψ〉, lying between 0 and 1, measuring how good the fit is.
If it equals 1, the fit is perfect (although M remains a partial representation of the
quantum state |Ψ〉) and M is being experienced with certainty. If it equals 0, there
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is no fit and M cannot be experienced. If it lies inbetween, any other consciousness
state M could be experienced too, the numbers 〈Ψ| Π̂M |Ψ〉 / 〈Ψ|Ψ〉 defining the
probability law according to which the actually experienced consciousness state will
be selected. So the quantum state |Ψ〉 of the universe determines the contents of
the experienced consciousness state M, according to a probability law reflecting how
good the mental categories in M fit the material reality |Ψ〉. On the other hand,
and this is probably even more astonishing, the experience of the consciousness state
M will reduce the quantum state |Ψ〉 of the universe to its component Π̂M |Ψ〉
corresponding to the mental categories in M. So we can say that consciousness ac-
tively shapes the material reality according to its own mental categories – or more
poetically, that you are putting human order into the world with every glance you
take at it!

In the quantum measurement example given in section 4.7, for instance, the quan-
tum superposition of two states of the brain of the observer, having either observed
the photodetector activated or not, resolves to one of the components corresponding
to the mental categories ‘I have seen the photodetector activated’ and ‘I haven’t seen
it activated yet’. Because the quantum state of the rest of the universe (here specifi-
cally the photodetector and the decaying atom) is correlated to the quantum state of
the brain via sensory perception, this reduction of the quantum state of the universe
to a given mental category will have consequences for the rest of the universe, too.
For instance, if the observer makes the conscious experience of seeing the photode-
tector activated, the state of the photodetector will also reduce to the activated state
only, because the unactivated state is only correlated to the component of the state
of the brain corresponding to the mental category ‘I haven’t seen the photodetector
activated yet’, which is being dropped. So the mental categories, which only concern
the quantum state of the brain originally, get transposed to external objects via the
correlation induced by sensory perception between them and the brain in the quan-
tum state |Ψ〉 of the universe. Similarly, the state of the decaying atom will also
reduce to the decayed state because the non-decayed state is only correlated to the
component of the state of the brain corresponding to the mental category ‘I haven’t
seen the photodetector activated yet’, which is being dropped.

If the observer had made instead another kind of measurement on the decaying
atom, e.g. measuring its position (which we suppose here to be uncorrelated with its
decay), the quantum state of the atom would have been reduced accordingly, so that
it would only be present in the region of space where it has been observed, whereas
the decayed and non-decayed states would still remain in a quantum superposition,
since they are not correlated with the consciousness state of the observer. So the
way our mental categories get transposed to external objects strongly depends on
the way we are observing them, i.e. on the way we are letting them get correlated
to the quantum state of our brains.

6.2 Epistemological considerations
From a historical perspective, it should become quite clear today why the founders of
Quantum Physics have had such difficulties to agree on an interpretation of this new
branch of Physics. Starting with a few subatomic experiments, like the measurement
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of the emission spectrum of hydrogen atoms, they ended up with a theory bringing
along a twofold scientific revolution and profoundly revising our world view.

The first revolution, which is nowadays widely accepted, concerns the fact that
material reality cannot be described within our usual mental categories. The most
classical example is the so-called wave-particle duality, which implies that elementary
particles, and as a consequence also atoms and molecules for instance, can occupy
several positions in space at a time and that their motion follow wave equations and
interference patterns typical for wave phenomena. And ultimately, not only invisible
particles, but also configurations of the whole universe can combine with each other
via wave amplitudes and interfere in their evolution in a similar way as waves would
do. This has been a big paradigm change compared to the ideal of Classical Physics,
where intelligibility, i.e. the adequation to our mental categories, was considered
an essential characteristic of any scientific theory. The position of Louis de Broglie,
for instance, is typical for the efforts to resist this paradigm change. After having
proposed himself the relation λ = h/p between the momentum p of a particle and the
wavelength λ of the corresponding wave phenomena, he developed the Pilot-Wave
Theory, an alternative interpretation of Quantum Mechanics (that we know today
to be false) according to which both the particle and the corresponding wave have
their own existence and can be described as in Classical Physics, i.e. according to
our mental categories – the particle having a definite trajectory and being “guided”
by the accompanying wave.

The second scientific revolution, which is far from being over yet, concerns the
fact that consciousness actively modifies the quantum state of the universe, according
to its own mental categories and in its own way, which cannot be reduced to other,
purely material phenomena: Technically, the collapse of a quantum state from |Ψ〉
to Π̂M |Ψ〉 obviously cannot be reduced to a Hamiltonian evolution of the form
Ûτ |Ψ〉. This is of course a radical paradigm change compared to the Cartesian-
ism of the Copenhagen interpretation, according to which the consciousness of the
“observer” passively takes notice of some aspects of the material world, e.g. the
(supposedly well-defined) state of a measurement apparatus. A typical opponent
to this paradigm change is Albert Einstein, who saw with very critical eyes the
“spooky action at a distance” implied by the collapse of the quantum state of the
universe, i.e. the instantaneous modification of the quantum state of a distant ob-
ject happening when the consciousness state of a previously correlated brain is being
selected. The famous Einstein-Podolsky-Rosen thought experiment, which has been
conceived to illustrate these non-local features of collapse (i.e. its incompatibility
to one of the central principles of Special Relativity), was thought to invalidate def-
initely the hypothesis of collapse, because it was conceived under the assumptions
that all physical phenomena should obey the same laws, described in Quantum The-
ory by the Hamiltonian evolution operator Ûτ , and that collapse should ultimately
be described in that way instead of using the ad-hoc assumption of the intervention
of a projection operator Π̂M. However, as this experiment has been realized for
instance by the team of Alain Aspect [2] in experimental conditions becoming more
and more sophisticated, the non-locality of quantum measurement has always been
demonstrated very clearly, so that it makes no doubt today that collapse does obey
other physical laws than Hamiltonian evolution alone.
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The first milestone of this second scientific revolution has been set by John von
Neumann with the idea that “mind causes collapse” [16]. This idea addresses a leak
in the Copenhagen interpretation, where we distinguish between a “macroscopic
world”, supposed to be ruled by the laws of Classical Physics, and a “microscopic
world”, ruled by the laws of Quantum Physics. The interface between both worlds
is build by measurement apparatuses, which are supposed to cause the collapse of
the quantum state of the microscopic world when they interact with it. This inter-
pretation relies on the assumption that no quantum phenomenon can be observed
without the help of a measurement apparatus, which is obviously false. For instance,
you can observe with your naked eyes the diffraction patterns of light passing in the
dark through the fine structures of woven fabric, and that is a genuine quantum
phenomenon. One could maybe “save” the Copenhagen interpretation by consider-
ing that the eye constitute the measurement apparatus in that case, but where do
an eye actually begin: With the cornea, the pupil, the retina, the retinal ganglion
cells? Or even inside the brain, after the neural processing of visual perceptions?
Defining the frontier between the microscopic and the macroscopic world seems to
be a rather arbitrary operation and it is therefore not really intellectually satisfying.
The only thing we are sure of is that, ultimately, our consciousness “resolves” quan-
tum superpositions according to our mental categories. This idea that, ultimately,
consciousness causes collapse was once known as the ‘standard interpretation’ of
Quantum Mechanics. It has been almost forgotten since, perhaps because it had
been originally formulated all to vaguely to be taken seriously. In this book, I am
formulating it again using a very precise and well-defined formalism, so that one can
unambiguously derive its implications on a very solid basis. I hope that this con-
tribution will help reconsidering the profound implications of this second scientific
revolution and widening its acceptance in the scientific community.

6.3 The Spinozist approach to Quantum Physics

The Spinozist aspects of our interpretation of Quantum Field Theory concern this
second scientific revolution, i.e. the role of consciousness in physical processes. His-
torically, Spinoza’s philosophy developed on top of Cartesianism, which considers
the material world to be a mechanical, deterministic one and consciousness to be
a passive, external observer of the happenings in the material world; although this
material world is supposed to obey the very strict laws of Classical Mechanics, the
mental world is supposed to be absolutely free, independent of the material one and
obeying no specific laws. Spinoza conserved this mechanical view of the material
world, but tried to ground the mental world upon the material one, considering that
consciousness cannot exist independently of a material body, that it reflects the state
of its material substrate and therefore obeys the same laws, which can be transposed,
in principle, to the mental world. Thus, consciousness becomes again part of Nature;
it isn’t considered any more to exist in an ideal realm exterior to the contingencies
of the material world.

Our interpretation of Quantum Field Theory relates to the Copenhagen inter-
pretation in a similar way as Spinozism relates to Cartesianism. In the Copenhagen
interpretation, the microscopic world only – and only the limited system under con-
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sideration – is supposed to obey the laws of Quantum Physics, i.e. the Hamiltonian
evolution and the collapse as the system interacts with a measurement apparatus.
On the contrary, the macroscopic world, including the observer, is supposed to exist
in an ideal realm where only the (Cartesian) laws of Classical Physics apply. In a
genuine Spinozist approach, our interpretation grounds this ideal realm upon the ma-
terial realm of the quantum world: The arbitrary distinction between a microscopic
and a macroscopic world vanishes, whereas collapse is supposed not to happen in an
interaction with a measurement apparatus – a mere artifact – but with brains – the
material substrate of a fundamental aspect of Nature, consciousness. Mind becomes
thus again part of Nature, and comes along with its own properties and physical
laws, completing the Hamiltonian evolution laws of purely material processes. Of
course, the relation between mind and body is much more complex than in classical
Spinozism, but I think that the basic approach of the problem of consciousness is
essentially the same, so that we can say, in that sense, that we are developing here
a Spinozist interpretation of Quantum Physics.
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Chapter 7

Philosophical issues

7.1 The explanatory gap

As it has been observed by science philosophers in the last century, the gap between
our understanding level of physical-material and of mental phenomena has been
continuously growing as the scientific community successfully focused on the devel-
opment of the Relativity and Quantum theories. It is therefore quite understandable
on a science psychological level that some cognitive neuroscientists may have been
hoping to be able to explain one day all mental phenomena in terms of biophysical
processes. However, even if we could describe one day the correspondence between
mental states and quantum states of the brain, the question of knowing “why” some
specific aspects of the material world correspond to certain mental experiences, and
why some other aspects do not, would still remain open. This question is known
as the “explanatory gap” and isn’t to be answered by a theory focusing uniquely
on the material world. The theory developed in this book addresses this issue in
a threefold way. First, it gives a well-defined status to mental states, considered
to be an aspect of reality on their own that isn’t merely derived from the material
one. This is expressed in the theory by the form H ×M of the set of the possible
states of God. Second, it defines the form of the correspondence between material
and mental states, which is given by the family of the supplementary subspaces HM

corresponding to each possible mental state M. This stresses the idea that individ-
ual subjective experiences are not necessarily only related to material aspects of a
single, individual brain, but that the totality of all subjective experiences globally
relates to the quantum state of the universe. Finally, the description of the random
collapse process from a virtual into a real state of God gives a first explanation of
what is happening at a material and at a mental level as a mental state is getting
experienced.
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7.2 Skepticism
According to philosophical skepticism, in the form of Descartes’ Cogito Ergo Sum
argument in his Discourse on the Method [6] for instance, the one and only aspect of
the world which we know beyond any doubt to be real is our present subjective expe-
rience, the ‘Cogito’. Nothing can guarantee us that the representations of the world it
carries – like our past experiences, the feeling of the permanence of our existence, the
image of our body, of the outer world, of our relations to others – have or have had
any physical reality. In particular, it cannot be taken for granted that experimental
evidence can be accumulated over the ages: Experimental science must rely on the
mere belief that the mental representations of what we consider to be accumulated
experimental evidence are related to physical processes that really did happen in the
past. Indeed, in physical terms, stating that I am having some subjective experience
ms only implies that the mental state M = (Nm) is such that Nms ≥ 1 and that the
quantum state |Ψ〉 of the universe belongs to H+

ms . It doesn’t necessarily imply that
the past evolution of |Ψ〉 corresponds to the mental representation of past events
in the subjective experience ms. The physical theory presented in this book belongs
therefore to the long tradition of philosophical skepticism insofar as it doubts the
very possibility of experimental science.

7.3 Materialism
Materialism is the doctrine according to which the subjective experience of con-
sciousness can be completely reduced to the corresponding physical-material pro-
cesses happening within our brains and thus can be explained without involving any
other level of reality than the purely material one. It is generally considered among
philosophers as the daydream of a physicist absorbed by his study object and be-
coming blind for the reality of his own subjective experience. Nevertheless, it still
has numerous supporters in today’s scientific community. In the frame of the theory
developed in this book, it could be formulated as the hypothesis that no subjective
experience is possible, since this would be equivalent to denying the existence of the
mental world, which is of another nature as the material one. Mathematically, this
hypothesis can be expressed simply as HMΩ = H, so that no subject is having any
subjective experience in any quantum state. Equivalently, this could be expressed in
terms of collapse operators by Π̂MΩ = 1, so that there is no collapse of the quantum
state of the universe. Its evolution reduces therefore to its Hamiltonian part,

|Ψ(t)〉 = exp
(
−i2π t− t0h Ĥ

)
|Ψ(t0)〉

and the stochastic process of mental state selection do not apply.
Materialism in this context is facing the problem that it cannot satisfactorily ex-

plain how it is supposed to “feel like” in quantum states where brains happen to be in
a quantum superposition of states corresponding to different states of consciousness.
This would be the case for instance in a state of the form:(√

0.9 Ψ̂α
m

†
+
√

0.1 Ψ̂α′
m′

†
)
HMΩ
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where the brain states corresponding to the mental states 1m and 1m′ are both present
in a quantum superposition with the statistical weights 90% and 10%, respectively.
There are two well-known ways of trying to escape this issue. In the no collapse
theory of Everett, each consciousness state in the quantum superposition of a brain
is supposed to be equally real as the others and to be experienced on its own. More
precisely, these consciousness states are supposed to be statistically “weighted” in
some (mysterious) way (since there isn’t any random process taking place) by the
square norm of the corresponding component of the quantum state of the universe,
so that we are supposed to be more likely to experience one of them if it corresponds
to a component with a greater square norm.

The second way of escaping the difficulties of materialism is to deny that there
are “noticeable” quantum superpositions of consciousness states of the brain. This
is basically the aim of all spontaneous collapse theories, which have been reviewed
exhaustively by Angelo Bassi and GianCarlo Ghirardi in their report Dynamical
Reduction Models [3]. Generally, the quantum state of the universe is supposed to
collapse in such a way that the center of mass of macroscopic objects is practically
always localized in a small region of space, so that we cannot notice its quantum
fluctuations with our naked senses. As a consequence, insofar as our consciousness
state is being mostly driven by sensory experience only, the states of consciousness
corresponding to the components of a quantum superposition of brains are most
likely to differ very little from another, so that it shouldn’t really mind if we don’t
know exactly which one is being experienced.

7.4 Solipsism

The solipsist is convinced that she is (and must be) the only person in the universe
who has a subjective experience. Solipsism makes thus unproblematic the fact that
we are experiencing the mental world in the form of a single subjective experience
instead of experiencing the whole mental state directly. In the frame of the theory
developed in this book, solipsism can be expressed as the hypothesis that the only
possible mental states (apart from MΩ) are of the form 1m, or in physical terms,
that:

H = HMΩ

⊥
⊕
⊥⊕
m

H1m

Of course, this hypothesis is logically perfectly correct, but it is utmost difficult to
make it compatible with the idea that mental states are being realized physically
by the presence of corresponding quantum states of brains. Even if one supposes
that the solipsist’s brain has something special that makes it differ from other brains
that aren’t giving rise to a subjective experience, one faces the problem that a quan-
tum state in which many “copies” of the solipsist’s brain, corresponding to different
subjective experiences, would be present couldn’t be related in a satisfactory way
to a single subjective experience: It is unclear, for instance, if quantum states in a
subspace of the form Ψ̂α′

m′

†
Ψ̂α

m

†
HMΩ should be experienced as 1m or 1m′ .
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7.5 Soul immortality theorem
Reminder As stated in section 4.2, Quantum Field Theory defines, for an arbitrary
initial quantum state |Ψi〉 6= 0 realized at the initial time ti = 0, the probability
laws Pt(M0, . . . ,Mt; |Ψi〉), where t ∈ N, that a given sequence of mental states
M0, . . . ,Mt is being experienced at times 0, . . . , tτ . These probability laws read:

Pt(M0, . . . ,Mt; |Ψi〉) = 〈Ψi| Π̂M0Û
†
τ Π̂M1 · · · Û†τ Π̂Mt

Ûτ · · · Π̂M1Ûτ Π̂M0 |Ψi〉 / 〈Ψi|Ψi〉

Definitions An infinite sequence (Mt), indexed on t ∈ N, is said to be “dead”
if it is constant, i.e. if Mt = M0 for all t ∈ N; to be “eventually dying” if it becomes
constant after a certain point, i.e. if there exists a t1 ∈ N∗ such that Mt = Mt1 for
all t ≥ t1, although Mt0 6= Mt1 for some t0 < t1; and to be “immortal” otherwise.

It is said to be “certain”, for a given initial quantum state |Ψi〉 6= 0, if we
have Pt(M0, . . . ,Mt; |Ψi〉) = 1 for all t ∈ N; to be “infinitely improbable” if
limt→∞ Pt(M0, . . . ,Mt; |Ψi〉) = 0; and to be “contingent” otherwise.

A quantum state is said to be “certainly dead” if, taken as an initial state, one of
the dead sequences is certain; to be “possibly dead” if a dead sequence is contingent;
to be “mortal” if an eventually dying sequence is certain or at least contingent; and
to be “immortal” otherwise.

Lemma Eventually dying sequences are infinitely improbable.
Proof An eventually dying sequence (Mt) is characterized, per definition, by

the existence of a tf ∈ N∗ such that:

tf = min{t ∈ N | ∀t′ > t, Mt′ = Mt}

This sequence is, per definition, infinitely improbable if and only if, for any initial
quantum state |Ψi〉 6= 0, we have:

Pt(M0, . . . ,Mt; |Ψi〉)
t→∞−−−→ 0

The analysis of the asymptotic behavior can be simplified by using, for t ≥ tf ,
following factorization:

Pt(M0, . . . ,Mt; |Ψi〉) = Ptf (M0, . . . ,Mtf ; |Ψi〉)

Pt−tf (Mtf , . . . ,Mt; Π̂Mtf
Ûτ · · · Π̂M1Ûτ Π̂M0 |Ψi〉)

The asymptotic behavior is governed by the second factor, which we will analyze
under the generic form:

Pt(M, . . . ,M; |Ψ〉) = 〈Ψ| (Π̂MÛ
†
τ )tΠ̂M(Ûτ Π̂M)t |Ψ〉 / 〈Ψ|Ψ〉

We will show that it admits a limit of the form:

Pt(M, . . . ,M; |Ψ〉) t→∞−−−→ 〈Ψ| Π̂H∞
M
|Ψ〉 / 〈Ψ|Ψ〉

where H∞M is a subspace of HM that we will define subsequently. We have therefore:

Pt(M0, . . . ,Mt; |Ψi〉)
t→∞−−−→

〈Ψi| Π̂M0Û
†
τ Π̂M1 · · · Û†τ Π̂H∞

Mtf

Ûτ · · · Π̂M1Ûτ Π̂M0 |Ψi〉 / 〈Ψi|Ψi〉
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and proving that Π̂H∞
M
Ûτ Π̂M′ = 0 for any M′ 6= M will yield the conclusion.

§ Let us first analyze the structure of a mental subspace HM. Let HnM be the
subspace of the quantum states in HM remaining in HM after 1, . . . , n applications
of the elementary evolution operator Ûτ . This operator being unitary, it is invertible,
so that we can define these subspaces by:

HnM :=
n⋂
t=0

Û−tτ HM

where n ∈ N. These subspaces are included in each other by construction, and we
write H∞M their intersection, given by:

H∞M :=
∞⋂
t=0

Û−tτ HM

§ HM being finite dimensional, there must exist a finite number of distinct nested
subspaces HnM. Indeed, Û−1

τ being injective, we have

Hn+1
M = HM ∩ Û−1

τ HnM

for any n ∈ N; if there exists a n ∈ N such that HnM = Hn+1
M , we have therefore by

recurrence HnM = Hn′M = H∞M for any n′ ≥ n. If there didn’t exist such a n ∈ N,
the inclusions Hn+1

M ⊂ HnM would all be strict, so that the dimension of H0
M = HM

would be infinite, which isn’t the case. There must also exist a nM ∈ N such that

nM = min{n ∈ N | HnM = Hn+1
M }

and we have HnM

M = H∞M.
§ In the special case nM = 0, it is trivial to show that Pt(M, . . . ,M; |Ψ〉) tends

to 〈Ψ| Π̂H∞
M
|Ψ〉 / 〈Ψ|Ψ〉 for any initial quantum state |Ψ〉 6= 0. In this case, we have

H∞M = HM and we will see that Pt(M, . . . ,M; |Ψ〉) = 〈Ψ| Π̂H∞
M
|Ψ〉 / 〈Ψ|Ψ〉 for any

t ∈ N. The assertion holds for t = 0 per definition, and Π̂M |Ψ〉 ∈ HM since Π̂M is a
projection operator on HM. For any quantum state |ΨM〉 ∈ HM, Ûτ |ΨM〉 has the
same norm as |ΨM〉 because of the unitarity of Ûτ , and since HM = H∞M ⊂ Û−1

τ HM,
Ûτ |ΨM〉 belongs to HM, so that Π̂MÛτ |ΨM〉 is equal to Ûτ |ΨM〉 and has the
same norm as |ΨM〉, too. It is easy then to prove by recurrence that (Π̂MÛτ )t |ΨM〉
is equal to Û tτ |ΨM〉 and has therefore the same norm as |ΨM〉 for any t ∈ N, so
that we have:

Pt(M, . . . ,M; |Ψ〉) = 〈Ψ| Π̂M(Û†τ Π̂M)t(Π̂MÛτ )tΠ̂M |Ψ〉 / 〈Ψ|Ψ〉
= 〈Ψ| Π̂M |Ψ〉 / 〈Ψ|Ψ〉 = 〈Ψ| Π̂H∞

M
|Ψ〉 / 〈Ψ|Ψ〉

for any quantum state |Ψ〉 6= 0 and any t ∈ N.
§ We assume from now on nM ≥ 1, so that the supplementary subspace H∞⊥M

of H∞M in HM, defined by:

HM = H∞M
⊥
⊕H∞⊥M
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isn’t reduced to the zero subspace. We will consider the endomorphism ÛM induced
by Ûτ on HM, given by:

ÛM := Π̂MÛτ Π̂M

With this operator, we can write for any t ∈ N∗ and any quantum state |Ψ〉 6= 0:

Pt(M, . . . ,M; |Ψ〉) = 〈Ψ| Û†M
tÛ tM |Ψ〉 / 〈Ψ|Ψ〉

and we will see that the subspaces HnM can be characterized, for any n ∈ N∗, by:

HnM = { |Ψ〉 ∈ H | 〈Ψ| Û†M
nÛnM |Ψ〉 = 〈Ψ|Ψ〉}

§ Let us prove it by recurrence. Π̂M being the orthogonal projection operator
on HM, for any quantum state |Ψ〉 ∈ H, Π̂M |Ψ〉 and |Ψ〉 have the same norm
if and only if |Ψ〉 ∈ HM, otherwise 〈Ψ| Π̂M |Ψ〉 < 〈Ψ|Ψ〉. Ûτ being unitary, it
preserves the norm of Π̂M |Ψ〉. Consequently, ÛM |Ψ〉 and |Ψ〉 have the same norm
if and only if |Ψ〉 ∈ HM and Ûτ Π̂M |Ψ〉 ∈ HM, otherwise 〈Ψ| Û†MÛM |Ψ〉 < 〈Ψ|Ψ〉.
For any |Ψ〉 ∈ HM, Π̂M |Ψ〉 = |Ψ〉, so that this condition is equivalent to |Ψ〉 ∈
HM ∩ Û−1

τ HM = H1
M. We have therefore:

H1
M = { |Ψ〉 ∈ H | 〈Ψ| Û†MÛM |Ψ〉 = 〈Ψ|Ψ〉}

which proves the assertion for n = 1. Let us assume that, for a given n ∈ N∗, ÛnM |Ψ〉
and |Ψ〉 have the same norm if and only if |Ψ〉 ∈ HnM, whereas 〈Ψ| Û†MnÛnM |Ψ〉 <
〈Ψ|Ψ〉 otherwise. It can then be proved like above that Ûn+1

M |Ψ〉 and |Ψ〉 have the
same norm if and only if |Ψ〉 ∈ HnM, ÛnM |Ψ〉 ∈ HM and Ûτ ÛnM |Ψ〉 ∈ HM, whereas
〈Ψ| Û†Mn+1Ûn+1

M |Ψ〉 < 〈Ψ|Ψ〉 otherwise. For any |Ψ〉 ∈ HnM, ÛnM |Ψ〉 = Ûnτ |Ψ〉,
so that this condition is equivalent to |Ψ〉 ∈ HnM ∩ Û−nτ HM ∩ Û−(n+1)

τ HM = Hn+1
M ,

which proves the assertion for any n ∈ N∗ by recurrence.
§ As a consequence, since HnM

M = H∞M and H∞⊥M are disjoint by construction,
we have in particular:

∀ |Ψ〉 ∈ H∞⊥M \ {0}, PnM
(M, . . . ,M; |Ψ〉) < 1

The function PnM
(M, . . . ,M; |Ψ〉) is continuous on H \ {0} and, being constant on

the rays C∗ |Ψ〉, its maximum on H∞⊥M \ {0} can be evaluated on the unit sphere
of this subspace. Because of the finite dimensionality of H∞⊥M , the unit sphere is
compact, so that this maximum exists and is being reached. There exists therefore
a pM ∈ [0, 1[ such that:

pnM

M = max{PnM
(M, . . . ,M; |Ψ〉) | |Ψ〉 ∈ H∞⊥M \ {0}}

This will allow us to set an upper bound to Pt(M, . . . ,M; |Ψ〉) for any t ≥ nM. Per
factorization, for any quantum state |Ψ〉 ∈ H \ {0} and any k ∈ N∗, we have:

PknM
(M, . . . ,M; |Ψ〉) = PnM

(M, . . . ,M; |Ψ〉)k

and, Pt(M, . . . ,M; |Ψ〉) being a decreasing function of t, we have more generally for
any t ≥ nM:

Pt(M, . . . ,M; |Ψ〉) ≤ PnM
(M, . . . ,M; |Ψ〉)bt/nMc
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where b·c denotes the floor function. In particular, for any quantum state |Ψ〉 ∈
H∞⊥M \ {0}, we have the estimation:

Pt(M, . . . ,M; |Ψ〉) ≤ pnMbt/nMc
M

t→∞−−−→ 0

§ It is easy to show that, for any quantum state |Ψ〉 ∈ H orthogonal to
H∞M and for any mental state M′ ∈ M, ÛM′ |Ψ〉 is still orthogonal to H∞M. For
any mental state M′ 6= M, this is trivial because ÛM′ |Ψ〉 ∈ HM′ , which is or-
thogonal to the mental subspace HM and a fortiori to its subspace H∞M. We as-
sume from now on M′ = M. The decomposition Π̂M = Π̂H∞

M
+ Π̂H∞⊥

M
reduces to

Π̂M |Ψ〉 = Π̂H∞⊥
M
|Ψ〉 ∈ H∞⊥M since |Ψ〉 is orthogonal to H∞M. Ûτ being unitary, it

preserves orthogonality, so that Ûτ Π̂M |Ψ〉 is orthogonal to ÛτH∞M = H∞M. The above
decomposition of Π̂M reduces therefore again to Π̂MÛτ Π̂M |Ψ〉 = Π̂H∞⊥

M
Ûτ Π̂M |Ψ〉,

which proves that ÛM |Ψ〉 ∈ H∞⊥M .
§ For any quantum state |Ψ〉 ∈ H, any mental state M ∈ M and any n ∈ N∗,

ÛnM |Ψ〉 can thus be decomposed by linearity into the orthogonal sum of a quantum
state Ûnτ Π̂H∞

M
|Ψ〉 ∈ H∞M and of a quantum state ÛnMΠ̂H∞⊥

M
|Ψ〉 ∈ H∞⊥M . Hence its

squared norm can be decomposed into:

〈Ψ| Û†M
nÛnM |Ψ〉 = 〈Ψ| Π̂H∞

M
|Ψ〉+ 〈Ψ| Π̂H∞⊥

M
Û†M

nÛnMΠ̂H∞⊥
M
|Ψ〉

If the quantum state |Ψ〉 ∈ H \ {0} is orthogonal to H∞⊥M , the second term is zero,
so that we have for any t ∈ N∗:

Pt(M, . . . ,M; |Ψ〉) = 〈Ψ| Π̂H∞
M
|Ψ〉 / 〈Ψ|Ψ〉

Otherwise, for any quantum state |Ψ〉 having a non-zero component in H∞⊥M , we
can write for any t ∈ N:

Pt(M, . . . ,M; |Ψ〉) = 〈Ψ| Π̂H∞
M
|Ψ〉 / 〈Ψ|Ψ〉

+ Pt(M, . . . ,M; Π̂H∞⊥
M
|Ψ〉) 〈Ψ| Π̂H∞⊥

M
|Ψ〉 / 〈Ψ|Ψ〉

so that we have more generally:

∀ |Ψ〉 ∈ H \ {0}, Pt(M, . . . ,M; |Ψ〉) t→∞−−−→ 〈Ψ| Π̂H∞
M
|Ψ〉 / 〈Ψ|Ψ〉

§ It is now easy to conclude. For any sequence (Mt) eventually dying at tf , as
stated above, we have for any initial quantum state |Ψi〉 ∈ H \ {0}:

Pt(M0, . . . ,Mt; |Ψi〉)
t→∞−−−→

〈Ψi| Π̂M0Û
†
τ · · · Π̂Mtf−1Û

†
τ Π̂H∞

Mtf

Ûτ Π̂Mtf−1 · · · Ûτ Π̂M0 |Ψi〉 / 〈Ψi|Ψi〉

Now we’ve already seen that, for any quantum state |Ψ〉 orthogonal to H∞Mtf
,

Ûτ |Ψ〉 is orthogonal to this subspace too. Since Mtf−1 6= Mtf by hypothesis, the
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subspaces HMtf−1 and H∞Mtf
⊂ HMtf are orthogonal to each other, so that we have

Π̂H∞
Mtf

Ûτ Π̂Mtf−1 = 0. As a consequence,

∀ |Ψi〉 ∈ H \ {0}, Pt(M0, . . . ,Mt; |Ψi〉)
t→∞−−−→ 0

Any eventually dying sequence is therefore infinitely improbable, Q. E. D.
Remark This result is actually a quite intuitive consequence of the finite di-

mensionality of the Hilbert space H. Precisely, the key argument – the compactness
of the unit sphere of H∞⊥M – requires that these subspaces – the “accessible” part of
the mental subspaces – be finite dimensional. This condition being given, the result
would still hold if the “inaccessible” part H∞M of the mental subspaces were infinite
dimensional, and/or if there were an infinite number of possible mental states.

Theorem No quantum state is mortal.
Proof This is an immediate consequence of the lemma.
Corollary There will be with certainty extra-terrestrial forms of conscious life.
Proof The mental stateMt1 we are experiencing right now at time t1 is presum-

ably not the only mental state we have ever experienced, so we take for granted that
there has already been a time t0 < t1 in the past where a mental state Mt0 6= Mt1

has been experienced. The probability that we keep experiencing the same mental
state Mt1 forever from now on can be expressed as a conditional probability of the
form:

lim
t→∞

Pt(M0, . . . ,Mt; |Ψi〉)/Pt1(M0, . . . ,Mt1 ; |Ψi〉)

where the sequence (Mt) is eventually dying. As a consequence of the lemma, this
probability is zero, hence we will experience with certainty a different mental state in
the future. This theorem holds for any time t > t1, too: There will be with certainty
a time t′ > t such that Mt′ 6= Mt. So basically, once the experienced mental state
has changed for the first time in the history of the universe, it will “keep moving”
forever, although it is still possible that there are long periods of “mental inactivity”
in between.

This applies in particular to the moment when the Sun, in about five billions of
years, will have eventually evolved to a red giant and made the Earth an unsuitable
place for any form of conscious life. By then, if there isn’t yet any extra-terrestrial
form of conscious life, the experienced mental state should be MΩ, i.e. the absence
of any mental experience. But this state cannot last forever, as we have just seen. If
we call “extra-terrestrial form of conscious life” the material substrate of the mental
state that would get experienced next, then there will be some with certainty.

Commentaries Proving such theorems in a book on the foundations of physics
could be taken as a provocation, but actually I included them here because they
are obvious consequences of the formalism and are independent of the details of the
physical interactions. They show clearly enough, I think, both the philosophical po-
tential and the dangers of any well-defined interpretation of Quantum Physics. These
theorems are in no way a proof of the reality of life after death or of the existence of
UFOs, but they would have good chances to get over-interpreted if they would hap-
pen to be vulgarized. Developing well-defined interpretations of Quantum Physics
obviously has the potential of addressing philosophical issues which are of interest to
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the public, and it would be a pity not to investigate them from a naturalistic point
of view.

7.6 Reincarnation theorem
Generalizing the soul immortality theorem, we will derive here a general theorem on
the recurrence of mental states, that we will call “reincarnation theorem” because
of its similarity with usual conceptions of reincarnation. A discussion of its precise
meaning follows the proof.

Notations Let M0 be a non empty subset of M and let us write HM0 the
corresponding mental subspace, given by:

HM0 :=
⊥⊕

M∈M0

HM

Let us define by recurrence, for any n ∈ N, the operators P̂ (n)
M0

by:

P̂
(0)
M0

:= Π̂M0 :=
∑

M∈M0

Π̂M

P̂
(n+1)
M0

:=
∑

M∈M0

Π̂MÛ
†
τ P̂

(n)
M0

Ûτ Π̂M

Finally, let us define by recurrence, for any n ∈ N, the subspaces HnM0
by:

H0
M0

:= HM0

Hn+1
M0

:= HnM0
∩ { |Ψ〉 ∈ H | ∀M0, . . . ,Mn ∈M0, Ûτ Π̂Mn

· · · Ûτ Π̂M0 |Ψ〉 ∈ HM0}

Let us write H∞M0
their intersection, H∞⊥M0

its supplementary subspace in HM0 , and
Π̂H∞M0

the orthogonal projection operator on H∞M0
.

Remarks For any initial quantum state |Ψ〉 6= 0, 〈Ψ| P̂ (n)
M0
|Ψ〉 / 〈Ψ|Ψ〉 repre-

sents the probability that the experienced mental state belongs to M0 at all times
t = 0, . . . , n. The operators P̂ (n)

M0
are hermitian and therefore diagonalizable on an

orthogonal basis with real eigenvalues; these eigenvalues being probabilities, they lie
between 0 and 1. The eigenspace for the eigenvalue 1 can be easily identified with
HnM0

. The subspace H∞M0
is therefore the set of all initial quantum states for which

the experienced mental state belongs with certainty toM0 at all times.
First lemma For any quantum state |Ψ〉 ∈ H orthogonal to H∞M0

, and for all
mental states M ∈ M, the quantum states Ûτ |Ψ〉 and Π̂M |Ψ〉 are orthogonal to
H∞M0

, too.
Second lemma The sequence of operators (P̂ (n)

M0
) converges towards Π̂H∞M0

.
Theorem An initial mental state Mi ∈M being given, for any initial quantum

state |Ψ〉 ∈ HMi \ {0}, the probability that the mental state Mi be experienced
again in the future equals 1.
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Proof of the first lemma Let us prove first that the subspace H∞M0
is

identical to its image ÛτH∞M0
. It is easy to see that, for any n ∈ N, the subspace

ÛτH1+n
M0

is included in HnM0
. Indeed, any quantum state |Ψ〉 ∈ H1+n

M0
belongs per

definition to HM0 and verifies, for all mental states M0, . . . ,Mn ∈ M0 and for any
t ∈ [1, n], Ûτ Π̂Mt

· · · Ûτ Π̂M0 |Ψ〉 ∈ HM0 . Summing up over all M0 ∈ M0 yields
Ûτ Π̂Mt · · · Ûτ Π̂M0 |Ψ〉 ∈ HM0 and, since |Ψ〉 ∈ HM0 , Ûτ Π̂Mt · · · Ûτ |Ψ〉 ∈ HM0 .
The quantum state Ûτ |Ψ〉 belongs also to HnM0

. We have therefore ÛτH1+n
M0

⊂
HnM0

. Now H∞M0
is the intersection of all subspaces HnM0

for n ∈ N, so its image
ÛτH∞M0

is included in the intersection of their images ÛτHnM0
, and a fortiori in the

intersection of the images ÛτH1+n
M0

, where n ∈ N. Since they are themselves included
in HnM0

, we have ÛτH∞M0
⊂ H∞M0

. The subspace H∞M0
being finite dimensional and

the endomorphism Ûτ injective, we have also dim ÛτH∞M0
= dimH∞M0

. We have
therefore ÛτH∞M0

= H∞M0
.

§ We can now prove the first part of the lemma: For any quantum state |Ψ〉 ∈ H
orthogonal to H∞M0

, the quantum state Ûτ |Ψ〉 is orthogonal to H∞M0
, too. Indeed,

the elementary evolution operator Ûτ being unitary, the quantum state Ûτ |Ψ〉 is
orthogonal to ÛτH∞M0

, which is identical to H∞M0
, as we have just seen.

§ Let us consider now, for any n ∈ N, a quantum state |Ψ〉 ∈ HnM0
and a mental

state M ∈M. We will show by recurrence on n that Π̂M |Ψ〉 belongs to HnM0
, too.

If M ∈ M0, it is clear that Π̂M |Ψ〉 belongs to H0
M0

, because Π̂M is a projection
operator on HM, which is a subspace of HM0 = H0

M0
. If M /∈ M0, Π̂M |Ψ〉 is

zero since |Ψ〉 belongs to HM0 by hypothesis, which is orthogonal to HM. So in all
cases, Π̂M |Ψ〉 ∈ H0

M0
. Let us assume that the assertion holds for a given n ∈ N.

To prove it at the next rang n+ 1, it is sufficient to show that, for any mental states
M0, . . . ,Mn ∈ M0, the quantum state Ûτ Π̂Mn

· · · Ûτ Π̂M0Π̂M |Ψ〉 belongs to HM0 .
If M0 6= M, this quantum state is zero since Π̂M0 and Π̂M are orthogonal projection
operators on two orthogonal subspaces HM0 and HM. If M0 = M, considering that,
Π̂M0 being a projection operator, Π̂2

M0
= Π̂M0 , this quantum state belongs to HM0

by hypothesis, which proves the assertion for all n ∈ N by recurrence. We have
therefore Π̂MHnM0

⊂ HnM0
for any mental state M ∈M and all n ∈ N.

§ One can see easily then that, for any mental state M ∈ M, the projection
Π̂MH∞M0

of the subspace H∞M0
is included in H∞M0

. Indeed, since H∞M0
is the in-

tersection of the subspaces HnM0
, its image Π̂MH∞M0

is included in the intersection
of the images Π̂MHnM0

, which are themselves included in the subspaces HnM0
, as

we have just seen. Their intersection is therefore included in the intersection of the
subspaces HnM0

, which is H∞M0
. We have therefore Π̂MH∞M0

⊂ H∞M0
for any mental

state M ∈M.
§ This will allow us to prove that the subspace H∞M0

can be decomposed as the
orthogonal sum of its projections Π̂MH∞M0

for M ∈ M0. This sum is orthogonal
since the projections are included in the orthogonal subspaces HM, respectively. It
is obvious that H∞M0

is included in the sum, since any quantum state |Ψ〉 ∈ H∞M0

belongs in particular to HM0 , so that |Ψ〉 = Π̂M0 |Ψ〉 =
∑

M∈M0
Π̂M |Ψ〉. The
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inverse inclusion also holds since, as we have just seen, the projections are subspaces
of H∞M0

. We have therefore H∞M0
=
⊥
⊕M∈M0Π̂MH∞M0

.
§ We can conclude from this result that the subspace H∞⊥M0

can be decomposed
too as the orthogonal sum of its projections Π̂MH∞⊥M0

for M ∈ M0. Indeed, the
subspace HM0 being the orthogonal sum of the mental subspaces HM for M ∈
M0, and the orthogonal components Π̂MH∞M0

of H∞M0
being respectively included

in the mental subspaces HM, the supplementary subspace of H∞M0
in HM0 can

be decomposed as the orthogonal sum of the respective supplementary subspaces
of Π̂MH∞M0

in HM – which are therefore its respective projections on the mental

subspaces HM. We have therefore H∞⊥M0
=
⊥
⊕M∈M0Π̂MH∞⊥M0

.
§ We can now prove the second part of the lemma: For any quantum state |Ψ〉 ∈

H orthogonal to H∞M0
, and any mental state M ∈M, the quantum state Π̂M |Ψ〉 is

orthogonal to H∞M0
, too. Indeed, the supplementary subspace of H∞M0

is the orthog-

onal sum of its supplementary subspace in HM0 , which is H∞⊥M0
=
⊥
⊕M∈M0Π̂MH∞⊥M0

,

and of the supplementary subspace of HM0 itself, which is
⊥
⊕M∈M\M0HM. So if

M /∈M0, the quantum state Π̂M |Ψ〉, which belongs to HM, is orthogonal to HM0 ,
and if M ∈M0, the quantum state Π̂M |Ψ〉 belongs to Π̂MH∞⊥M0

, which is a subspace
of H∞⊥M0

and is therefore orthogonal to H∞M0
. For any mental state M ∈ M, the

quantum state Π̂M |Ψ〉 is therefore orthogonal to H∞M0
, Q. E. D.

Proof of the second lemma We will show first that, for any n ∈ N, the
subspace HnM0

is the eigenspace of P̂ (n)
M0

for the eigenvalue 1. This is obvious for
n = 0, where we have P̂ (0)

M0
= Π̂M0 and H0

M0
= HM0 . Let us prove first, by

recurrence on n ∈ N, that the subspace HnM0
is included in the eigenspace of P̂ (n)

M0
for the eigenvalue 1. As we’ve just seen, this assertion holds for n = 0. Let us suppose
that the assertion is proved for a given n ∈ N, and let us consider a quantum state
|Ψ〉 ∈ Hn+1

M0
. We have per definition:

P̂
(n+1)
M0

|Ψ〉 =
∑

M0∈M0

. . .
∑

Mn∈M0

Π̂M0Û
†
τ · · · Π̂Mn

Û†τ Π̂M0Ûτ Π̂Mn
· · · Ûτ Π̂M0 |Ψ〉

Since |Ψ〉 ∈ Hn+1
M0

, the quantum state Ûτ Π̂Mn
· · · Ûτ Π̂M0 |Ψ〉 belongs to HM0 ,

and since the elementary evolution operator Ûτ is unitary and Π̂Mn
is a projection

operator, we have Π̂MnÛ
†
τ Ûτ Π̂Mn = Π̂Mn , so that:

P̂
(n+1)
M0

|Ψ〉 = P̂
(n)
M0
|Ψ〉

Now the recurrence hypothesis yields P̂ (n)
M0
|Ψ〉 = |Ψ〉, so that P̂ (n+1)

M0
|Ψ〉 = |Ψ〉,

which proves the recurrence.
§ Let us prove now, for any n ∈ N, the inverse inclusion of the eigenspace of

P̂
(n)
M0

for the eigenvalue 1 in the subspace HnM0
. Since P̂ (n)

M0
|Ψ〉 = |Ψ〉 implies

〈Ψ| P̂ (n)
M0
|Ψ〉 = 〈Ψ|Ψ〉 for any quantum state |Ψ〉 ∈ H, it is sufficient to prove,

by recurrence on n ∈ N, that 〈Ψ| P̂ (n)
M0
|Ψ〉 = 〈Ψ|Ψ〉 implies |Ψ〉 ∈ HnM0

for any
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quantum state |Ψ〉 ∈ H. We have already proved this for n = 0, so let us assume
that the assertion holds for a given n ∈ N. We have per definition:

〈Ψ| P̂ (n+1)
M0

|Ψ〉 =
∑

M0∈M0

. . .
∑

Mn∈M0

∥∥∥Π̂M0Ûτ Π̂Mn
· · · Ûτ Π̂M0 |Ψ〉

∥∥∥2

=
∑

M0∈M0

. . .
∑

Mn∈M0

∑
M∈M0

∥∥∥Ûτ Π̂MÛτ Π̂Mn · · · Ûτ Π̂M0 |Ψ〉
∥∥∥2

Now for any quantum state |Φ〉 ∈ H,
∑

M∈M0
‖Ûτ Π̂M |Φ〉 ‖2 ≤ 〈Φ|Φ〉, the case

of an equality happening if and only if |Φ〉 ∈ HM0 . The sequence (〈Ψ| P̂ (n)
M0
|Ψ〉)

is therefore decreasing, with an initial value 〈Ψ| P̂ (0)
M0
|Ψ〉 = 〈Ψ| Π̂M0 |Ψ〉, and

we have 〈Ψ| P̂ (n+1)
M0

|Ψ〉 = 〈Ψ| P̂ (n)
M0
|Ψ〉 if and only if, for all M0, . . . ,Mn ∈ M0,

Ûτ Π̂Mn · · · Ûτ Π̂M0 |Ψ〉 ∈ HM0 . Let us suppose now that we have 〈Ψ| P̂ (n+1)
M0

|Ψ〉 =
〈Ψ|Ψ〉. This implies, because of the decrease of the sequence and of its initial value,
that |Ψ〉 ∈ HM0 and that 〈Ψ| P̂ (n)

M0
|Ψ〉 = 〈Ψ|Ψ〉. We have thus 〈Ψ| P̂ (n+1)

M0
|Ψ〉 =

〈Ψ| P̂ (n)
M0
|Ψ〉, which implies, as we have just seen, that for all M0, . . . ,Mn ∈ M0,

Ûτ Π̂Mn
· · · Ûτ Π̂M0 |Ψ〉 ∈ HM0 . The recurrence hypothesis yielding |Ψ〉 ∈ HnM0

, we
have therefore |Ψ〉 ∈ Hn+1

M0
, which proves the recurrence. The eigenspace of P̂ (n)

M0
for the eigenvalue 1 is therefore HnM0

for all n ∈ N.
§ Now the subspace HM0 being finite dimensional, there must exist a finite

number of distinct nested subspaces HnM0
, so that there exists an integer nM0 such

that:
nM0 := min{n ∈ N | HnM0

= H∞M0
}

The eigenspace of P̂ (n)
M0

for the eigenvalue 1 is therefore H∞M0
for any n ≥ nM0 . In

the special case where nM0 = 0, we have P̂ (n)
M0

= Π̂H∞M0
for all n ∈ N, so that the

sequence (P̂ (n)
M0

) trivially converges towards Π̂H∞M0
. Let us assume from now on that

we have nM0 ≥ 1. Since P̂ (n)
M0

induces an hermitian operator on HM0 , it induces
also, for n ≥ nM0 , an hermitian operator on the supplementary subspace H∞⊥M0

of its
eigenspace H∞M0

. It is diagonalizable on an orthogonal basis of H∞⊥M0
, with a finite

number of real eigenvalues, which are all lying in the interval [0, 1[. There exists
therefore a number pM0 ∈ [0, 1[ such that pnM0

M0
be the greatest eigenvalue of this

operator, which can be defined by:

p
nM0
M0

:= max{〈Ψ| P̂ (nM0 )
M0

|Ψ〉 / 〈Ψ|Ψ〉 | |Ψ〉 ∈ H∞⊥M0
\ {0}}

§ For any initial quantum state |Ψ〉 ∈ H∞⊥M0
, 〈Ψ| P̂ (nM0 )

M0
|Ψ〉 / 〈Ψ|Ψ〉 represents

the probability that the quantum state be in HM0 at all times 0, ..., nM0 . Now,
as we have seen in the first lemma, the quantum state at time nM0 will still be
orthogonal to H∞M0

, since it is of the form Π̂MnM0
Ûτ · · · Ûτ Π̂M0 |Ψ〉 for a given

sequence of mental states M0, . . . ,MnM0
∈ M0. It belongs therefore to H∞⊥M0

, so
that the probability that it stays in HM0 for another nM0 time steps is at most
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p
nM0
M0

, too. We have therefore:

〈Ψ| P̂ (2nM0 )
M0

|Ψ〉 / 〈Ψ|Ψ〉 ≤ p2nM0
M0

As we have seen, 〈Ψ| P̂ (t)
M0
|Ψ〉 / 〈Ψ|Ψ〉 is a decreasing function of t, so that we have

more generally, for any t ∈ N:

〈Ψ| P̂ (t)
M0
|Ψ〉 / 〈Ψ|Ψ〉 ≤ pnM0bt/nM0c

M0

where b·c denotes the floor function.
§ Let ( |Ψi〉) be an orthonormal basis of the subspace H∞⊥M0

. The partial trace
of the operator P̂ (t)

M0
on this subspace is given, for any t ∈ N, by:

TrH∞⊥M0
P̂

(t)
M0

=
∑
i

〈Ψi| P̂ (t)
M0
|Ψi〉

so that we have:

TrH∞⊥M0
P̂

(t)
M0
≤ pnM0bt/nM0c
M0

dimH∞⊥M0

t→∞−−−→ 0

Now this partial trace is the sum of the eigenvalues multiplied by the dimension
of the respective eigenspace, and all these eigenvalues are positive. The greatest
eigenvalue of P̂ (t)

M0
on H∞⊥M0

converges therefore towards 0, too, which proves that
the sequence of operators (P̂ (t)

M0
) converges towards 0 on this subspace.

§ We have already seen the eigenspace of P̂ (t)
M0

for the eigenvalue 1 isH∞M0
for any

t ≥ nM0 , and that the operator induced on H∞⊥M0
converges towards 0. Furthermore,

for any quantum state |Ψ〉 orthogonal to the subspace HM0 , we have P̂
(t)
M0
|Ψ〉 = 0.

The sequence of operators (P̂ (t)
M0

) converges therefore towards Π̂H∞M0
, Q. E. D.

Proof of the theorem An initial mental state Mi ∈ M and an initial
quantum state |Ψ〉 ∈ HMi

\ {0} being given, the probability p1 that the mental
state Mi be experienced again at the next time step is given by:

p1 = 〈Ψ| Û†τ Π̂Mi
Ûτ |Ψ〉 / 〈Ψ|Ψ〉

If the mental state experienced at the next time step is different from Mi, which
happens with a probability 1−p1, then this mental state belongs toM0 :=M\{Mi}.
More generally, for any t ∈ N∗, the probability pt that the mental state Mi have
been experienced again at any time t′ ≤ t is given by:

pt = 1− 〈Ψ| Û†τ P̂
(t−1)
M0

Ûτ |Ψ〉 / 〈Ψ|Ψ〉

The second lemma yields:

pt
t→∞−−−→ 1− 〈Ψ| Û†τ Π̂H∞M0

Ûτ |Ψ〉 / 〈Ψ|Ψ〉

and since the initial quantum state |Ψ〉, belonging to HMi , is orthogonal to H∞M0
,

the first lemma yields:
pt

t→∞−−−→ 1
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The initial mental state Mi will therefore be experienced again in the future with
certainty, Q. E. D.

Remark This proof of the reincarnation theorem relies on the hypothesis that
the Hilbert space be finite dimensional. This assumption could be relaxed a little and
reduced to the hypothesis that the set of all mental states accessible from the initial
quantum state – that it, the last mental states Mn of sequences M0, . . . ,Mn such
that Π̂Mn

Ûτ · · · Π̂M0Ûτ |Ψ〉 6= 0 – be finite, and the corresponding mental subspaces
finite dimensional.

Commentaries Once again, we are addressing here philosophical, or rather
spiritual questions which could not even be expressed in the frame of any scientific
theory so far. The reincarnation theorem has been derived with the greatest possible
formal rigor, so that it is firmly established upon its foundations, which are compat-
ible with everything we know about quantum physics today. So rejecting without
any further discussion the notion of “reincarnation” considered in this theorem – the
recurrence of mental states – in no scientifically valid option any more. But it is
important in the first place to clarify what the theorem exactly means in order to
avoid misunderstandings. In a monist framework, contrary to the dualist concep-
tions of most religions supporting the idea of reincarnation, there is no mental entity
like a soul which could be reincarnated in another body after the death of the last
one. The only thing that can be “incarnated” are mental states, i.e. the totality
of all subjective experiences taking place at a given instant. And a mental state is
being experienced whenever the quantum state, representing the state of affairs in
the whole universe at the material level, becomes projected into the corresponding
mental subspace, in which there is exactly one brain presenting the corresponding ac-
tivity pattern for each subjective experience in the mental state. This projection, or
“collapse”, is a stochastic process following the Born rule, which has been validated
uncountable times by all quantum experiments. Now the theorem states that, once
a mental state has been experienced, the probability that, in the natural evolution of
the physical state via physical interactions and collapse processes, this mental state
be never experienced again, vanishes in the limit of an infinitely long time. So if
we take for granted the fact that the physical state will keep evolving forever the
way it does today, – and in particular if there is no sudden and unpredictable “end
of the world” standing before us, – it is certain that a mental state that has been
experienced once will be experienced again in the future. This is all the reincar-
nation theorem is stating; it is a mere recurrence theorem for mental states, quite
similar in this respect to the Poincaré recurrence theorem for the state of classical
systems in Hamiltonian dynamics. But it is not a recurrence theorem for quantum
states: The same mental state can be experienced in an infinite number of different
quantum states belonging to the corresponding mental subspace, and even quantum
states that differ very slightly from another can yield to very different evolutions on
the long term, as we know from quantum chaos theory.

Now it follows trivially from the reincarnation theorem that every single subjec-
tive experience, once it has taken place for the first time, will be repeated again and
again an infinite number of times. Every single instant of your own mental life, in
particular, will be experienced again and again in an infinite number of lives. This
is the point where we are getting very near to usual notions of reincarnation. If you
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identify yourself with your subjective experiences, then you can say that you will
be reincarnated in an infinite number of lives. These lives might be very different
from another; not all of the subjective experiences of your current life must take
place again in each “reincarnation”, nor must they occur in the same order, and
your subjective experiences might even “reincarnate” in several lives taking place
simultaneously (which approaches the notion of “avatars”). Now this notion of rein-
carnation has nothing supernatural; it happens, so to say, at random, whenever the
physical evolution of the universe produces again a brain with an activity pattern
corresponding to a subjective experience that has already taken place before. It
differs in this regard from the Buddhist conception of reincarnation, for instance,
where the soul continues after death its journey on Earth by reincarnating in the
body of another, possibly very different living being. Actually, an important part
of your subjective experiences probably won’t be “reincarnated” on this Earth, be-
cause they contain representations of contingent elements of reality – like the last
breaking news, technological artifacts, mode accessories – that most probably won’t
occur again in the culture history of Manhood. But still they will be “incarnated”
again – on another planet quite similar to Earth. And even your vision of the
constellations in the night sky will be “reincarnated” once – in another galaxy quite
similar to the Milky Way. Now how is this possible? The latest astronomical observa-
tions, interpreted in the frame of the Λ-Cold Dark Matter model (a refinement of the
Friedmann–Lemaître–Robertson–Walker general relativistic, homogeneous, isotropic
model of the universe [11]), suggest that the universe is going to keep expanding at
a constant rate, the subsequent dilution of matter preventing on the long term the
formation of new galaxies and stars, which will eventually all get extincted. This is
the so-called “cold death” scenario in cosmology. Why do we seem to escape this
scenario in lattice quantum field theory? This is definitely not related to the details
of the physical interactions, and in particular of the choice of the graviton model we
could use, since the reincarnation theorem doesn’t depend on the exact form of the
elementary evolution operator Ûτ . The situation would certainly look different if
the elementary evolution operator would change across time, which would probably
be the case if we computed a semi-classical gravitational background at each time
step, for instance. But for now, with a constant elementary evolution operator, the
model cannot account for an expansion of space-time; the galaxies, if they are drift-
ing apart consequently to a “big bang” event, would meet again after having traveled
through half of the universe because of its toroidal character. This would be kind of
a “big crunch” event (but not due to a contraction of space-time) which would be
followed by another “big bang” event that could possibly yield to the formation of
another Milky Way and of another Earth on which your subjective experiences could
be “reincarnated”. This conception is quite similar to Buddhist cosmology, where
the world is supposed to cyclically come to existence and dissolve again.

There are several ways of questioning the reality of this “reincarnation” in a purely
scientific approach. The reincarnation theorem relies on the finite dimensionality of
the Hilbert space of quantum states, and thus on the assumption that the physical
space itself is discrete and finite, which has elusive, but in principle measurable
consequences. Observing experimentally structures in differential scattering cross-
sections revealing the finiteness of the lattice step or the quantization of momentum,
or observing patterns in the angular distribution of the cosmic microwave background
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radiation revealing the toroidal character of space, would provide hints in favor of this
model and thus of the reincarnation theorem, while their non-observation would put
experimental constraints on its parameter space. On the other hand, in a theoretical
approach, fulfilling the program of constructive quantum field theory – constructing
a well-defined theory of interacting fields, compatible with the Standard Model, on
the four dimensional Minkowski space-time – would provide an alternative to our
model where the Hilbert space presumably wouldn’t be finite dimensional, so that
the reincarnation theorem probably wouldn’t hold. Finally, on a conceptual level,
developing an alternative model of the mental world or of the mind-body relationship
within the frame of quantum theory would be a promising option too, since this is a
completely new field of science. There are probably plenty of interesting models to
investigate once one has accepted to put subjective experience in an equation in the
first place.



Part IV

Physical interactions
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Chapter 8

Quantum Electrodynamics

In this chapter, we will define the interaction Hamiltonian of Quantum Electrody-
namics (QED), describing the photon mediated electromagnetic interaction between
electrically charged fermions, and we will derive the composition of the corresponding
dressed particles.

8.1 Electric charge operator

On each point n of space, the electric charge operator is defined by:

Q̂n := e
∑
φ,λ′,λ

Qφ

(
ψ̂
φ

n,λ′ + ψ̂φn,λ′

)
γ0

(
ψ̂φn,λ + ψ̂

φ

n,λ

)

where e is the elementary electric charge (opposite electric charge of a bare electron)
and Qφ the electric charge number of fermions of type φ: Qφ = 0 for the neutrinos
φ ∈ {νe, νµ, ντ}, Qφ = −1 for the charged leptons φ ∈ {e, µ, τ}, Qφ = 2

3 for the
quarks φ ∈ {u, c, t} and Qφ = − 1

3 for the quarks φ ∈ {d, s, b}. In this expression,
the creation and annihilation spinor operators are defined as in appendix C.3 and
the Dirac matrices as in appendix B.2.

The anti-particle creation and annihilation spinor operators in this expression
yield to a uniformly distributed mean electric charge in the vacuum state, given by:

〈Ω| Q̂n |Ω〉 = e
∑
φ,λ

Qφ = −4e

and called ‘zero-point electric charge’. Since this charge distribution is uniform, it
doesn’t have any contribution to the interaction Hamiltonian as defined in section
8.5.
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8.2 Electric current operator

On each point n of space, the electric current operator is defined by:

Ĵn := ec
∑
φ,λ′,λ

Qφ

(
ψ̂
φ

n,λ′ + ψ̂φn,λ′

)
γ

(
ψ̂φn,λ + ψ̂

φ

n,λ

)

where the summation goes over all fermions φ. In this expression too, the creation
and annihilation spinor operators are defined as in appendix C.3 and the Dirac
matrices as in appendix B.2.

8.3 Electric potential operator

On each point n of space, the electric potential operator is defined by:

V̂n :=
∑
n′

Q̂n′

8πε0a(1 + 2N)−3
∑

qγ 6=0

exp
(
i2πqγ · (n− n′)

)
πq2
γ

where ε0 is the permittivity of the bare vacuum. Its constant Fourier component
has been set to 0 (which is consistent with the Coulomb gauge condition used in
appendix C.1), so that the zero-point electric charge in section 8.1 doesn’t have any
contribution to the interaction Hamiltonian as defined in section 8.5.

8.4 Magnetic potential operator

On each point n of space, the magnetic potential operator is defined by:

Ân :=
∑
λγ

ψ̂γ
†
n,λγ + ψ̂γn,λγ

In this expression, the creation and annihilation spinor operators are defined as in
appendix C.1.

8.5 QED interaction Hamiltonian

The interaction Hamiltonian of QED is defined by:

Ĥ′QED :=
∑

n

Ĵn · Ân + Q̂nV̂n
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Its development on the plane waves basis is given by:

∑
n

Ĵn · Ân =

√
e2hc

8π2ε0a2 (1 + 2N)−3/2
∑

φ,q,λ′,λ

Qφ

∑
qγ 6=0,λγ

q−1/2
γ[(

ψ̂
φ

q−qγ ,λ
′ + ψ̂φ−q+qγ ,λ

′

)
γ

(
ψ̂φq,λ + ψ̂

φ

−q,λ

)
·

ε∗qγ ,λγ â
γ
†
qγ ,λγ

√
1 + N̂γ

qγ ,λγ +(
ψ̂
φ

q+qγ ,λ
′ + ψ̂φ−q−qγ ,λ

′

)
γ

(
ψ̂φq,λ + ψ̂

φ

−q,λ

)
·

εqγ ,λγ â
γ

qγ ,λγ

√
N̂γ

qγ ,λγ

]
∑

n

Q̂nV̂n = e2

8π2ε0a(1 + 2N)−3
∑

φ,q,λ′,λ

Qφ

∑
φ0,q0,λ

′
0,λ0

Qφ0

∑
qγ 6=0

q−2
γ

(
ψ̂
φ

q+qγ ,λ
′ + ψ̂φ−q−qγ ,λ

′

)
γ0

(
ψ̂φq,λ + ψ̂

φ

−q,λ

)
(
ψ̂
φ0

q0−qγ ,λ
′
0

+ ψ̂φ0−q0+qγ ,λ
′
0

)
γ0

(
ψ̂φ0

q0,λ0 + ψ̂
φ0
−q0,λ0

)

8.6 Dressed states
As a consequence of the electromagnetic interaction between the photon and the
charged fermion fields, an excitation of a single particle field like

∣∣∣Nφ
q,λ

〉
is unstable

and is also a poor model for observed particles. In fact, these particles are always
being observed “dressed”, i.e. forming a particle complex together with excitations of
the other fields. As a consequence, the “bare” rest mass, electric charge and magnetic
moment of these particles, as they appear in the QED model, do not correspond to
the values observed by dressed particles. These renormalized values as well as the
composition of dressed particles can be calculated in the frame of QED as a function
of the bare values, which can also be indirectly determined experimentally.

We consider a bare state of the form
∣∣∣(Nφ

q,λ)
0

〉
and will derive the corresponding

dressed state |Ψ〉 as eigenstate of Ĥ0 + Ĥ′ for an eigenvalue E to be determined.
Assuming the bare and dressed states aren’t orthogonal to each other, we write the
latter as:

|Ψ〉 := Ψ̃
(

(Nφ
q,λ)

0

) ∑
(Nφ

q,λ
)

Φ̃0

(
(Nφ

q,λ)
) ∣∣∣(Nφ

q,λ)
〉

using unnormalized coefficients Φ̃0 verifying the condition:

Φ̃0

(
(Nφ

q,λ)
0

)
= 1



69

The eigenvalue equation, projected on
∣∣∣(Nφ

q,λ)
0

〉
resp. on another plane wave state∣∣∣(Nφ

q,λ)
1

〉
, reads:

H ′0,0 +
∑

(Nφ
q,λ

)
2
6=(Nφ

q,λ
)
0

H ′0,2Φ̃2,0 = E − E0

H ′1,0 +
∑

(Nφ
q,λ

)
2
6=(Nφ

q,λ
)
0

H ′1,2Φ̃2,0 = (E − E1)Φ̃1,0

where we use the shorthand notations:

H ′b,a :=
〈

(Nφ
q,λ)

b

∣∣∣ Ĥ′
∣∣∣(Nφ

q,λ)
a

〉
Ea :=

〈
(Nφ

q,λ)
a

∣∣∣ Ĥ0

∣∣∣(Nφ
q,λ)

a

〉
Φ̃a,0 := Φ̃0

(
(Nφ

q,λ)
a

)
To solve this equation iteratively, we develop Ĥ′, Φ̃0 and E as power series in the
elementary electric charge e:

Ĥ′ := Ĥ′(1) + Ĥ′(2)

Φ̃0 :=
∞∑
n=0

Φ̃(n)
0

E :=
∞∑
n=0

E(n)

where we take:

Ĥ′(1) :=
∑

n

Ĵn · Ân

Ĥ′(2) :=
∑

n

Q̂nV̂n

Φ̃(0)
a,0 := δa,0

In the case of bare states which are nondegenerate with respect to Ĥ0, i.e. such that
E2 6= E0 for any (Nφ

q,λ)
2
6= (Nφ

q,λ)
0
, assuming that the eigenvalue equation should

hold to each order separately, we have to the zeroth order:

E(0) = E0

to the first order:

E(1) = H
′(1)
0,0

Φ̃(1)
1,0 =

H
′(1)
1,0

E0 − E1
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to the second order:

E(2) = H
′(2)
0,0 +

∑
(Nφ

q,λ
)
2
6=(Nφ

q,λ
)
0

H
′(1)
0,2 H

′(1)
2,0

E0 − E2

Φ̃(2)
1,0 =

H
′(2)
1,0

E0 − E1
+

∑
(Nφ

q,λ
)
2
6=(Nφ

q,λ
)
0

H
′(1)
1,2 H

′(1)
2,0

(E0 − E1)(E0 − E2) −
H
′(1)
1,0 H

′(1)
0,0

(E0 − E1)2

and to the order n > 2:

E(n) =
∑

(Nφ
q,λ

)
2
6=(Nφ

q,λ
)
0

(
H
′(1)
0,2 Φ̃(n−1)

2,0 +H
′(2)
0,2 Φ̃(n−2)

2,0

)

Φ̃(n)
1,0 =

∑
(Nφ

q,λ
)
2
6=(Nφ

q,λ
)
0

H
′(1)
1,2 Φ̃(n−1)

2,0 +H
′(2)
1,2 Φ̃(n−2)

2,0

E0 − E1
−

n−1∑
m=1

Φ̃(m)
1,0

E(n−m)

E0 − E1

8.7 Dressed vacuum
The vacuum state itself isn’t stable and would become populated by pair creation
processes. Up to the first order, the dressed vacuum is composed of the bare vacuum

|Ω〉 as well as of states of the form
∣∣∣∣1φq−qγ ,λ

′1φ−q,λ1γqγ ,λγ

〉
, where φ is any electrically

charged fermion and qγ 6= 0. The corresponding unnormalized coefficients are given
by:

Φ̃(1) = −

√
e2

4πε0hc(1 + 2N)−3/2Qφ

uφ
†
q−qγ ,λ

′γ0γuφ−q,λ · ε∗qγ ,λγ
(2πqγ)1/2

(
Eφq−qγ

+ Eφ−q + Eγqγ

)
a/hc

The corresponding energy is of second order and can be written as:

E(2) = (1 + 2N)3 e2

4πε0a
∑
φ

Q2
φκ

Ω
φ

κΩ
φ := (1 + 2N)−6

∑
q,qγ 6=0

 1
2πq2

γ

∑
λ′,λ

∣∣∣uφ†q−qγ ,λ
′u
φ
−q,λ

∣∣∣2

−

∑
λ′,λ,λγ

∣∣∣uφ†q−qγ ,λ
′γ0γuφ−q,λ · ε∗qγ ,λγ

∣∣∣2
2πqγ

(
Eφq−qγ

+ Eφ−q + Eγqγ

)
a/hc


where the spin summations evaluate to:

∑
λ′,λ

∣∣∣uφ†q−qγ ,λ
′u
φ
−q,λ

∣∣∣2 = 1−
M2
φ + q − qγ · q

Eφq−qγ
Eφ−q(a/hc)2
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∑
λ′,λ,λγ

∣∣∣uφ†q−qγ ,λ
′γ0γuφ−q,λ · ε

∗
qγ ,λγ

∣∣∣2 =

2

1 +
M2
φ + (q − qγ · qγ)(q · qγ)/q2

γ

Eφq−qγ
Eφ−q(a/hc)2



For mφ = 0 and in the special cases where q = 0 or q − qγ = 0, they evaluate
respectively to 1 and 2. The numerical coefficients κΩ

φ only depend on the reduced
masses of the bare particles and are plotted below:

κΩ
φ as a function of Mφ

for N = 1, 2 and 3 (dotted, dashed and solid lines)

In Mφ = 0, we have κΩ
φ ≈ 0.266, 0.248 and 0.246 for N = 1, 2 and 3 respectively; as

Mφ →∞, we have κΩ
φ → 0−. Since the result converges to an integral expression for

N→∞, I shall assume that the coefficients obtained by carrying out the computation
for N = 3 are already a good approximation.

This energy is represented by following Feynman diagram:
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!q - q", #’

!- q, #

"q", #"

where the Coulomb interaction term is conventionally represented by the case λγ = 0.
Assuming κΩ

φ ≈ 0.25 for electrically charged fermions, the energy of the electromag-
netically dressed vacuum evaluates up to the second order to:

E(2) ≈ 0.25(1 + 2N)3 14
3

e2

4πε0a

8.8 Dressed charged fermion

We consider an electrically charged fermion of type f in the bare state
∣∣∣1fqf ,λf〉. Up

to the first order, the corresponding dressed state is composed of the bare state, of

states of the form
∣∣∣∣1fqf ,λf 1φq−qγ ,λ

′1φ−q,λ1γqγ ,λγ

〉
, where φ is any electrically charged

fermion, qγ 6= 0 and (φ, q − qγ , λ′) 6= (f, qf , λf ), as well as of states of the form∣∣∣∣1fqf−qγ ,λ
1γqγ ,λγ

〉
, where qγ 6= 0. The corresponding unnormalized coefficients are

given by:

Φ̃(1) = −

√
e2

4πε0hc(1 + 2N)−3/2Qφ

uφ
†
q−qγ ,λ

′γ0γuφ−q,λ · ε∗qγ ,λγ
(2πqγ)1/2

(
Eφq−qγ

+ Eφ−q + Eγqγ

)
a/hc

for states of the form
∣∣∣∣1fqf ,λf 1φq−qγ ,λ

′1φ−q,λ1γqγ ,λγ

〉
, and by:

Φ̃(1) = −

√
e2

4πε0hc(1 + 2N)−3/2Qf

uf
†
qf−qγ ,λ

γ0γufqf ,λf · ε
∗
qγ ,λγ

(2πqγ)1/2
(
Efqf−qγ

+ Eγqγ − E
f
qf

)
a/hc

for states of the form
∣∣∣∣1fqf−qγ ,λ

1γqγ ,λγ

〉
, respectively.
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The corresponding energy is of second order and can be written as:

E(2) = E(2) (Ω) + e2

4πε0aQ2
fκ

f
qf ,λf

κfqf ,λf := (1 + 2N)−3
∑

qγ 6=0

[
1

2πq2
γ

∑
λ

∣∣∣uf †qf−qγ ,λ
ufqf ,λf

∣∣∣2

−

∑
λ,λγ

∣∣∣uf †qf−qγ ,λ
γ0γufqf ,λf · ε

∗
qγ ,λγ

∣∣∣2
2πqγ

(
Efqf−qγ

+ Eγqγ − E
f
qf

)
a/hc


−(1 + 2N)−3

∑
qγ 6=0

[
1

2πq2
γ

∑
λ

∣∣∣uf †qf ,λfuf−qf−qγ ,λ

∣∣∣2

−

∑
λ,λγ

∣∣∣uf †qf ,λf γ0γuf−qf−qγ ,λ
· ε∗qγ ,λγ

∣∣∣2
2πqγ

(
Efqf + Ef−qf−qγ

+ Eγqγ

)
a/hc



where E(2) (Ω) is the second order energy of the dressed vacuum. The spin summa-
tions evaluate to:

∑
λ

∣∣∣uf †qf−qγ ,λ
ufqf ,λf

∣∣∣2 = 1
2

(
1 +

M2
f + qf − qγ · qf

Efqf−qγ
Efqf (a/hc)2

)
∑
λ,λγ

∣∣∣uf †qf−qγ ,λ
γ0γufqf ,λf · ε

∗
qγ ,λγ

∣∣∣2 = 1−
M2
f + (qf − qγ · qγ)(qf · qγ)/q2

γ

Efqf−qγ
Efqf (a/hc)2

∑
λ

∣∣∣uf †qf ,λfuf−qf−qγ ,λ

∣∣∣2 = 1
2

1−
M2
f + qf · qf + qγ

EfqfE
f
−qf−qγ

(a/hc)2


∑
λ,λγ

∣∣∣uf †qf ,λf γ0γuf−qf−qγ ,λ
· ε∗qγ ,λγ

∣∣∣2 = 1 +
M2
f + (qf · qγ)(qf + qγ · qγ)/q2

γ

EfqfE
f
−qf−qγ

(a/hc)2

The vacuum energy diagram is also completed by subtracting following contribution:
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fqf, !f

f- qf - q", !

"q", !"

and by adding following self-energy diagram:

fqf, !f

fqf - q", !

"q", !"

fqf, !f

for a given mode (qf , λf ) of the fermion field.

8.9 Dressed photon

We consider a photon in the bare state
∣∣∣1γqγ ,λγ〉, where qγ 6= 0. Up to the first order,

the corresponding dressed state is composed of the bare state, of states of the form∣∣∣∣1γqγ ,λγ1φq−q′γ ,λ
′1φ−q,λ1γq′γ ,λ′γ

〉
, where φ is any electrically charged fermion, q′γ 6= 0 and

(q′γ , λ′γ) 6= (qγ , λγ), of states of the form
∣∣∣∣2γqγ ,λγ1φq−qγ ,λ

′1φ−q,λ

〉
as well as of states

of the form
∣∣∣∣1φq+qγ ,λ

′1φ−q,λ

〉
. The corresponding unnormalized coefficients are given

by:

Φ̃(1) = −

√
e2

4πε0hc(1 + 2N)−3/2Qφ

uφ
†
q−q′γ ,λ

′γ0γuφ−q,λ · ε∗q′γ ,λ′γ
(2πq′γ)1/2

(
Eφq−q′γ

+ Eφ−q + Eγq′γ

)
a/hc
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for states of the form
∣∣∣∣1γqγ ,λγ1φq−q′γ ,λ

′1φ−q,λ1γq′γ ,λ′γ

〉
, by:

Φ̃(1) = −

√
2 e2

4πε0hc(1 + 2N)−3/2Qφ

uφ
†
q−qγ ,λ

′γ0γuφ−q,λ · ε∗qγ ,λγ
(2πqγ)1/2

(
Eφq−qγ

+ Eφ−q + Eγqγ

)
a/hc

for states of the form
∣∣∣∣2γqγ ,λγ1φq−q′γ ,λ

′1φ−q,λ

〉
, and by:

Φ̃(1) = −

√
e2

4πε0hc(1 + 2N)−3/2Qφ

uφ
†
q+qγ ,λ

′γ0γuφ−q,λ · εqγ ,λγ

(2πqγ)1/2
(
Eφq+qγ

+ Eφ−q − E
γ
qγ

)
a/hc

for states of the form
∣∣∣∣1φq+qγ ,λ

′1φ−q,λ

〉
, respectively.

The corresponding energy is of second order and can be written as:

E(2) = E(2) (Ω)− e2

4πε0a
∑
φ

Q2
φκ

γ
qγ ,λγ ,φ

κγqγ ,λγ ,φ := (1 + 2N)−3
∑

q

∑
λ′,λ

∣∣∣uφ†q−qγ ,λ
′γ0γuφ−q,λ · ε∗qγ ,λγ

∣∣∣2
2πqγ

(
Eφq−qγ

+ Eφ−q + Eγqγ

)
a/hc

+(1 + 2N)−3
∑

q

∑
λ′,λ

∣∣∣uφ†q+qγ ,λ
′γ0γuφ−q,λ · εqγ ,λγ

∣∣∣2
2πqγ

(
Eφq+qγ

+ Eφ−q − E
γ
qγ

)
a/hc

where the spin summations evaluate to:

∑
λ′,λ

∣∣∣uφ†q−qγ ,λ
′γ0γuφ−q,λ · ε

∗
qγ ,λγ

∣∣∣2 = 1 +
M2
φ + (q − qγ · qγ)(q · qγ)/q2

γ

Eφq−qγ
Eφ−q(a/hc)2

∑
λ′,λ

∣∣∣uφ†q+qγ ,λ
′γ0γuφ−q,λ · εqγ ,λγ

∣∣∣2 = 1 +
M2
φ + (q + qγ · qγ)(q · qγ)/q2

γ

Eφq+qγ
Eφ−q(a/hc)2

The vacuum energy diagram is also completed by adding following (negative) con-
tribution:
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!q - q", #’

!- q, #

"q", #"

and by adding following (negative) self-energy diagram:

!q!, "!

#q + q!, "’

#- q, "

!q!, "!

for a given mode (qγ , λγ) of the photon field.



Part V

Examples
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Chapter 9

Wave packets

9.1 Gaussian wave packet
A well-known consequence of the quantum formalism is the impossibility to describe
a particle, like in classical mechanics, as a mass point having at each instant a
well-defined position and velocity. In the quantum mechanics of a single particle
in continuous space-time, the movement of the wave packet defining its statistical
position can still be described, like in classical fluid mechanics, by a probability
current density (which is related to the phase gradient of the wave packet), but as
soon as several particles are present or are even being created and annihilated like in
Quantum Field Theory, the analogy to classical fluid mechanics becomes much more
elusive. It is still possible, however, to describe approximate particle trajectories
in the frame of Quantum Field Theory if one considers that proper quantum effects
may remain beyond the reach of experimental precision in some situations. Gaussian
wave packets are a typical model of such particles with a quasi-classical behavior,
i.e. with a position and a velocity being well-defined to a good approximation.

A Gaussian wave packet of a particle of type φ and in the spin state λ, with a
mean momentum q0 ∈ (Z/(1+2N))3, a mean position n0 ∈ R3 and a width w0 ∈ R∗+,
is given by:

|Ψ〉 = Ĝφλ

†
(q0,n0, w0) |Ω〉

Ĝφλ

†
(q0,n0, w0) := C(q0, w0)(2w0)3/2(1 + 2N)−3/2∑

q

exp
(
−2πw2

0q
2 − i2πq · n0

)
âφ
†
q0+q,λ

with the normalization factor:

C(q0, w0) :=
[

(2w0)3(1 + 2N)−3
∑

q

exp
(
−4πw2

0q
2)]−1/2

In the usual case where 1 � w0 � N, this normalization factor approximates to
1. On the position basis, the creation operator of the Gaussian wave packet can be
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expressed as:

Ĝφλ

†
(q0,n0, w0) = C(q0, w0)w−3/2

0

∑
n

A(n− n′0(n), w0)

exp
(
−π(n− n′0(n))2/2w2

0 + i2πq0 · n
)
âφ
†
n,λ

with the numerical factor:

A(n−n′0(n), w0) := (2w2
0)3/2(1 + 2N)−3

∑
q

exp
(
−2πw2

0
(
q − i(n− n′0(n))/2w2

0
)2)

where n′0(n) can be chosen arbitrarily in n0 + ((1 + 2N)Z)3. In the usual case
where 1� w0 � N, this factor approximates to 1 if n′0(n) can be chosen such that
‖n− n′0(n)‖ � N. To the zeroth order, the Hamiltonian evolution of the Gaussian

wave packet |Ψ0〉 = Ĝφλ

†
(q0,n0, w0) |Ω〉 is given by:

|Ψt〉 = C(q0, w0)(2w0)3/2(1 + 2N)−3/2∑
q

exp
(
−2πw2

0q
2 − i2πq · n0 − i2πEφq0+q(t− t0)/h

)
âφ
†
q0+q,λ |Ω〉

If w0 � q−1
0 , the saddle-point approximation Eφq0+q ≈ Eφq0

+ q · ∇qE
φ
q0

can be used
and it follows:

|Ψt〉 ≈ exp
(
−i2πEφq0

(t− t0)/h
)
Ĝφλ

†
(q0,nt, w0) |Ω〉

nt := n0 + vφq0
(t− t0)/a

The mean position nt of the particle follows therefore, in the toroidal space (R/(1 +
2N)Z)3, a classical trajectory at the constant velocity vφq0

which would be attributed
classically to a point mass of mass mφ and of momentum hq0/a.



80

Chapter 10

Coulomb scattering

10.1 Leading order calculation
We consider in this section the scattering of an electron by an atomic nucleus of
atomic number Z. We model the nucleus by a classical point charge without magnetic
moment, being at rest at the origin in the lattice reference frame and having a mass
much higher than the mass of the electron. The corresponding electromagnetic field is
described as a classical Coulomb potential V cl given in terms of Fourier components
by:

V cln := (1 + 2N)−3
∑

qγ 6=0

Ṽ clqγ
exp

(
i2πn · qγ

)
Ṽ clqγ

:= Ze
4π2ε0aq2

γ

The corresponding semi-classical interaction Hamiltonian takes the form:

Ĥ′ := Ĥ′QED + Ĥcl

Ĥcl :=
∑

n

Q̂nV
cl

n

and its development on the plane wave basis is given by:

Ĥcl = Ze2

4π2ε0a(1 + 2N)−3
∑

φ,q,λ′,λ

Qφ

∑
qγ 6=0

q−2
γ

(
ψ̂
φ

q+qγ ,λ
′ + ψ̂φ−q−qγ ,λ

′

)
γ0

(
ψ̂φq,λ + ψ̂

φ

−q,λ

)

As initial and final states, we take:

|Ψi〉 :=
∣∣∣1eqi,λi〉

|Ψf 〉 :=
∣∣∣1eqf ,λf〉
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The matrix element of the interaction Hamiltonian is given for qf 6= qi by:

H ′f,i = (1 + 2N)−3 −Ze2

4π2ε0a‖qf − qi‖2
ue†qf ,λfu

e
qi,λi

and the leading order transition probability for this process is also represented by
following diagram:

eqi, !i
eqf, !f

Vcl
qf - qi

Ze

We consider a detector capturing the electrons having their momentum in the solid
angle δΩ. For i /∈ δF , the leading order transition probability takes the form:

P(2) (i→ δF) ≈
∫
δΩ

∫ ∞
0

(2π)2 t− t0
h

∣∣H ′f+δq,i

∣∣2 δ(2)
t−t0 (Ef+δq − Ei)(

(1 + 2N) a
h

)3
p2dpdΩ

By taking following continuation for the factors of the integrand:∣∣H ′f+δq,i

∣∣2 ≈ ((1 + 2N)a)−6 Z2e4h4

16π4ε2
0‖p− pi‖4

∣∣∣ue†q,λfueqi,λi∣∣∣2
δ

(2)
t−t0 (Ef+δq − Ei) ≈ δ

(2)
t−t0

(√
(mec2)2 + (pc)2 − Ei

)
the integration over p yields to:

P(2) (i→ δF) ≈ (t− t0)jiσ(2) (i→ δF)

where ji is the incident particle flux, given by:

ji := ((1 + 2N)a)−3
vi

vi := pi
Ei/c2

and σ(2) (i→ δF) the leading order cross section, given for i /∈ δF by:

σ(2) (i→ δF) ≈
∫
δΩ

(
Ze2

8πε0vipi

)2 ∣∣∣ue†q,λfueqi,λi∣∣∣2 dΩ
sin (θ/2)4
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where θ is the deviation angle of the electron.
If the incident electron beam isn’t polarized and if the polarization of the scattered

electron isn’t being measured, the cross section is obtained by adding the cross
sections corresponding to the final spin states λf and averaging over the cross sections
corresponding to the initial spin states λi:〈

σ(2) (i→ δF)
〉
≈
∫
δΩ

(
Ze2

8πε0vipi

)2 1
2
∑
λf ,λi

∣∣∣ue†q,λfueqi,λi∣∣∣2 dΩ
sin (θ/2)4

The spin summation is given for E = Ei by:

1
2
∑
λf ,λi

∣∣∣ue†q,λfueqi,λi∣∣∣2 = 1− β2
i sin (θ/2)2

and the mean cross section takes also the form:〈
σ(2) (i→ δF)

〉
≈
∫
δΩ

(
Ze2

8πε0vipi

)2 (
1− β2

i sin (θ/2)2
) dΩ

sin (θ/2)4

The total mean cross section for deviation angles θ ≥ θm is also given by:

〈
σ(2) (i→ F)

〉
≈
(

Ze2

8πε0vipi

)2( 4π
tan (θm/2)2 + 8πβ2

i ln (sin (θm/2))
)
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Appendix A

Usual functions

A.1 The sinc function
In this document, the sinc function is defined by:

sinc (X) :=
{

1 for X = 0
sin (πX) /(πX) otherwise

This function admits following integral expression:

sinc (X) = 1
X

∫ X/2

−X/2
exp (i2πx) dx

and is normalized by: ∫ +∞

−∞
sinc (X) dX = 1

A.2 The esinc function
In this document, the esinc function is defined by:

esinc (X) := exp (iπX) sinc (X)

where the sinc function is defined as in appendix A.1. This function admits following
integral expression:

esinc (X) = 1
X

∫ X

0
exp (i2πx) dx

can be written:
esinc (X) = sin (2πX)

2πX + i1− cos (2πX)
2πX

and verifies:
esinc (−X) = esinc (X)
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A.3 Nascent delta functions
In this document, we make use of following nascent delta functions, which converge
to the delta energy distribution for t− t0 →∞:

δ
(1)
t−t0 (E) := t− t0

h sinc
(
t− t0

h E

)
δ

(2)
t−t0 (E) := t− t0

h sinc
(
t− t0

h E

)2

where the sinc function is defined as in appendix A.1. The square of the first one
can be expressed in terms of the second one as:

δ
(1)
t−t0 (E)2 = t− t0

h δ
(2)
t−t0 (E)

We also make use of following family of functions converging to a distribution as
t− t0 →∞:

δ
(P.V.)
t−t0 (E) := 2 t− t0h esinc

(
t− t0

h E

)
where the esinc function is defined as in appendix A.2. Its limit is given by:

lim
t−t0→∞

δ
(P.V.)
t−t0 (E) = δ(E) + i

π
P.V.

(
1
E

)
where the Cauchy principal value of 1/E is defined by its action on any test function
φ(E) by:(

P.V.
(

1
E

)
, φ(E)

)
:= P.V.

∫ +∞

−∞

φ(E)
E

dE

= lim
ε→0+

(∫ −ε
−∞

φ(E)
E

dE +
∫ +∞

ε

φ(E)
E

dE
)



86

Appendix B

Dirac and Pauli matrices

B.1 Pauli matrices
In this document, the Pauli matrices, which act canonically as endomorphisms of
H2, are represented by:

σ1 :=
(

0 1
1 0

)
σ2 :=

(
0 −i
i 0

)
σ3 :=

(
1 0
0 −1

)
These matrices verify the anticommutation relations:

{σa, σb} := σaσb + σbσa = 2δa,bI2

B.2 Dirac matrices
In this document, the Dirac matrices, which act canonically as endomorphisms of
H4, are represented by:

γ0 :=
(
I2 0
0 −I2

)
γ1 :=

(
0 σ1
−σ1 0

)

γ2 :=
(

0 σ2
−σ2 0

)
γ3 :=

(
0 σ3
−σ3 0

)
These matrices verify the anticommutation relations:

{γµ, γν} := γµγν + γνγµ = 2gµνI4

We will make use of the condensed vectorial notation:

γ :=

γ1

γ2

γ3


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Appendix C

Spinor operators

C.1 Photon spinor operators
In this document, we use following conventions for the polarization vectors of photons
in the lattice reference frame:

εq,1 := − 1√
2

1√
q2
1 + q2

2

1
q

q1q3 − iq2q
q2q3 + iq1q
−(q2

1 + q2
2)


εq,−1 := 1√

2
1√

q2
1 + q2

2

1
q

q1q3 + iq2q
q2q3 − iq1q
−(q2

1 + q2
2)


For the special case of wave vectors q parallel to the third axis, we use the conven-
tions:

εq,1 := − 1√
2

 1
iq3/q

0


εq,−1 := 1√

2

 1
−iq3/q

0


For the special case of the wave vector q = 0, we take εq,λ := 0. We extend this

definition periodically to all q ∈
(

Z
1+2N

)3
by εq,λ := εq,λ.

The polarization vectors of photons verify the Coulomb gauge conditions:

q · εq,λ = 0
ε0,λ = 0

as well as, for q 6= 0, the orthogonality relations:

ε∗q,λ′ · εq,λ = δλ′,λ
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One can also notice the relations:

ε−q,λ = ε∗q,λ

εq,−λ = −ε∗q,λ

The photon annihilation and creation spinor operators, which act canonically as
homomorphisms from H to H3, are defined for q 6= 0 by:

ψ̂γq,λ := ((1 + 2N)a)−3/2

√
ha

8π2ε0cqεq,λâγq,λ

√
N̂γ

q,λ

ψ̂γ
†
q,λ := ((1 + 2N)a)−3/2

√
ha

8π2ε0cqε
∗
q,λâ

γ
†
q,λ

√
1 + N̂γ

q,λ

where ε0 is the permittivity of the bare vacuum. For q = 0, we take ψ̂γq,λ = 0 and

ψ̂γ
†
q,λ = 0. The spinor operators can also be defined on the position basis by:

ψ̂γn,λ :=
∑

q

exp (i2πn · q) ψ̂γq,λ

ψ̂γ
†
n,λ :=

∑
q

exp (−i2πn · q) ψ̂γ
†
q,λ

We extend these definitions periodically to all q ∈
(

Z
1+2N

)3
by ψ̂γq,λ := ψ̂γq,λ and

ψ̂γ
†
q,λ := ψ̂γ

†
q,λ.

We will make use following condensed notation, representing a matrix acting
canonically as an endomorphism of H4:

γ · εq,λ := (εq,λ)1γ
1 + (εq,λ)2γ

2 + (εq,λ)3γ
3

C.2 Fermion antisymmetrization operators

Let us define first a standard order on
(
[−N,N]
1+2N

)3
, for instance the total order relation

given by q < q′ if and only if one of the following assertions holds:

q1 < q′1

{
q1 = q′1
q2 < q′2


q1 = q′1
q2 = q′2
q3 < q′3

This allows us to label the particles of any field (φ, λ) present in a plane wave state∣∣∣(Nφ
q,λ)

〉
in a standard way, using a standard particle numbering function πφλ defined

by:
πφλ

(
(Nφ

q,λ)
)

:= (q1, q2, . . . , qNφ
λ

)
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{
q1 ≤ q2 ≤ . . . ≤ qNφ

λ

|{i | qi = q}| = Nφ
q,λ

The fermion antisymmetrization operators ε̂φq,λ can be defined conventionally with
the help of this standard particle numbering function by their action on the momen-
tum basis:

ε̂φq,λ

∣∣∣(Nφ
q,λ)

〉
:= (−1)σ

∣∣∣(Nφ
q,λ)

〉
σ = |{i | qi ≤ q}|

(qi) = πφλ

(
(Nφ

q,λ)
)

These hermitian, unitary operators are always used together with the corresponding
creation and annihilation operators for fermion fields. They verify following essential
anticommutation properties, where the anticommutation notation {·, ·} is defined by
{â, b̂} := âb̂+ b̂â:

{ε̂φq,λ, âφq,λ} = 0

{ε̂φq,λâφq,λ, ε̂φq′,λâφq′,λ} = 0

{âφ
†
q,λε̂

φ
q,λ, âφ

†
q′,λε̂

φ
q′,λ} = 0

{ε̂φq,λâφq,λ, âφ
†
q′,λε̂

φ
q′,λ} = δq,q′

C.3 Dirac spinor operators
In this document, we use following conventions for the Dirac spinors in the lattice
reference frame (for charged leptons φ ∈ {e, µ, τ}, neutrinos φ ∈ {νe, νµ, ντ} and
quarks φ ∈ {u, c, t, d, s, b}):

uφq,1/2 :=

√
1
2

(
1 + mφc2

E

)
1
0

p3/ (mφc + E/c)
(p1 + ip2) / (mφc + E/c)



uφq,−1/2 :=

√
1
2

(
1 + mφc2

E

)
0
1

(p1 − ip2) / (mφc + E/c)
−p3/ (mφc + E/c)



uφq,1/2 :=

√
1
2

(
1 + mφc2

E

)
(p1 − ip2) / (mφc + E/c)
−p3/ (mφc + E/c)

0
1



uφq,−1/2 :=

√
1
2

(
1 + mφc2

E

)
p3/ (mφc + E/c)

(p1 + ip2) / (mφc + E/c)
1
0


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In these expressions, we used the shorthand notations E := Eφq and p := hq/a for
energy and momentum. For the special case of the wave vector q = 0, we take the
values:

uφ0,1/2 :=


1
0
0
0

 uφ0,−1/2 :=


0
1
0
0

 uφ0,1/2 :=


0
0
0
1

 uφ0,−1/2 :=


0
0
1
0


as a definition for mφ = 0, too. We extend these definitions periodically to all

q ∈
(

Z
1+2N

)3
by uφq,λ := uφq,λ and uφq,λ := uφq,λ.

These spinors verify the orthogonality relations:

uφ
†
q,λ′u

φ
q,λ = δλ′,λ

uφ
†
q,λ′u

φ
q,λ = δλ′,λ

as well as the Dirac equations:

γµpµu
φ
q,λ = mφc uφq,λ

γµpµu
φ
q,λ = −mφc uφq,λ

where we use the condensed notation:

γµpµ := E

c γ
0 − p1γ

1 − p2γ
2 − p3γ

3

The annihilation and creation spinor operators of these particles and of their anti-
particles, which act canonically as homomorphisms between H and H4, are defined
by:

ψ̂φq,λ := uφq,λε̂
φ

q,λâφq,λ

ψ̂
φ

q,λ := uφ
†
q,λγ

0âφ
†
q,λε̂

φ
q,λ

ψ̂φq,λ := uφ
†
q,λγ

0ε̂φq,λâφq,λ

ψ̂
φ

q,λ := uφq,λâ
φ
†

q,λε̂
φ

q,λ

where the fermion antisymmetrization operators ε̂φq,λ are defined as in appendix
C.2. These spinor operators can also be defined on the position basis by:

ψ̂φn,λ := (1 + 2N)−3/2
∑

q

exp (i2πn · q) ψ̂φq,λ

ψ̂
φ

n,λ := (1 + 2N)−3/2
∑

q

exp (−i2πn · q) ψ̂φq,λ

ψ̂φn,λ := (1 + 2N)−3/2
∑

q

exp (i2πn · q) ψ̂φq,λ

ψ̂
φ

n,λ := (1 + 2N)−3/2
∑

q

exp (−i2πn · q) ψ̂φq,λ
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We extend these definitions periodically to all q ∈
(

Z
1+2N

)3
by ψ̂φq,λ := ψ̂φq,λ,

ψ̂
φ

q,λ := ψ̂
φ

q,λ, ψ̂φq,λ := ψ̂φq,λ and ψ̂φq,λ := ψ̂
φ

q,λ.

Spinor products
In the development of the interaction Hamiltonian on the plane waves basis, the Dirac
spinors always appear in the form of products. For instance (see section 8.5), the
elastic scattering terms of the Coulomb interaction, with or without spin flip, contain
following products, where we use the shorthand notations γ := γφq and γ′ := γφq′ for
the Lorentz factors:

uφ
†
q′,±1/2u

φ
q,±1/2 = 1

2

√
1 + 1

γ′

√
1 + 1

γ

(
1 +

q′ · q ± i(q′ × q)3
M2
φ(1 + γ′)(1 + γ)

)

uφ
†
q′,∓1/2u

φ
q,±1/2 =

i(q′ × q)1 ∓ (q′ × q)2

2M2
φ

√
(1 + γ′)(1 + γ)γ′γ

These expressions are also valid for the corresponding antiparticles φ. The parti-
cle pair creation and annihilation terms of the Coulomb interaction, with equal or
opposite spins, contain following products:

uφ
†
q′,±1/2u

φ
q,±1/2 = 1

2

√
1 + 1

γ′

√
1 + 1

γ

(
q′1 ∓ iq′2

Mφ(1 + γ′) + q1 ∓ iq2
Mφ(1 + γ)

)
uφ
†
q′,∓1/2u

φ
q,±1/2 = 1

2

√
1 + 1

γ′

√
1 + 1

γ

(
∓q′3

Mφ(1 + γ′) + ∓q3
Mφ(1 + γ)

)
The calculation of transition probabilities involves the square of the absolute value
of these products, given by:

∣∣∣uφ†q′,λuφq,λ∣∣∣2 =
(q′ · q)2 + (q′ × q)2

3
4M4

φ(1 + γ′)(1 + γ)γ′γ + 1
4γ′γ

(
(1 + γ′)(1 + γ) + 2q′ · q

M2
φ

)
∣∣∣uφ†q′,−λuφq,λ∣∣∣2 =

(q′ × q)2
1 + (q′ × q)2

2
4M4

φ(1 + γ′)(1 + γ)γ′γ

Their sum, involved when the spin of the scattered particles isn’t being measured,
takes the form:

∑
λ′

∣∣∣uφ†q′,λ′uφq,λ∣∣∣2 = 1
4

(√
1 + 1

γ′

√
1 + 1

γ
+
√

1− 1
γ′

√
1− 1

γ

)2

− β′βsin (θ/2)2

where we used the shorthand notations β := βφq and β′ := βφq′ and where we in-
troduced the scattering angle θ between q and q′. In the case where this angle is
undefined because one of q or q′ is zero, the last term can be dropped.
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